The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization.
View Article and Find Full Text PDFBone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft.
View Article and Find Full Text PDFIn recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range.
View Article and Find Full Text PDFThe main issue to be faced to get size estimates of 3D modification of the dental canal after endodontic treatment is the co-registration of the image stacks obtained through micro computed tomography (micro-CT) scans before and after treatment. Here quantitative analysis of micro-CT images have been performed by means of new dedicated software targeted to the analysis of root canal after endodontic instrumentation. This software analytically calculates the best superposition between the pre and post structures using the inertia tensor of the tooth.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2011
The description of the fibrillogenesis pathway and the identification of "on-pathway" or "off-pathway" intermediates are key issues in amyloid research as they are concerned with the mechanism for onset of certain diseases and with therapeutic treatments. Recent results on the fibril formation process revealed an unexpected complexity both in the number and in the types of species involved, but the early aggregation events are still largely unknown, mainly because of their experimental inaccessibility. To provide information on the early stage events of self-assembly of an amyloidogenic protein, during the so-called lag phase, stopped-flow time-resolved small angle x-ray scattering (SAXS) experiments were performed.
View Article and Find Full Text PDFSodium dodecylsulfate (SDS) and cetyltrimethylammonium bromide (CTAB) dispersed in aqueous solution form catanionic vesicles. Depending on composition, such vesicles show different net charge, stability, and interaction capability, indicative of the strong impact that catanionic systems may have in gene therapy and drug delivery technologies. To reveal the interplay among composition, net charge, sensitivity to temperature changes, vesicle size, and inner structure, a series of experiments on catanionic vesicles prepared at different SDS/CTAB mole ratios was performed.
View Article and Find Full Text PDFSynchrotron radiation micro-computed tomography (SRmuCT) revealed the microstructure of a CEL2 glass-ceramic scaffold with macropores of several hundred microns characteristic length, in terms of the voxel-by-voxel 3D distribution of the attenuation coefficients throughout the scanned space. The probability density function of all attenuation coefficients related to the macroporous space inside the scaffold gives access to the tomograph-specific machine error included in the SRmuCT measurements (also referred to as instrumental resolution function). After Lorentz function-based clearing of the measured CT data from the systematic resolution error, the voxel-specific attenuation information of the voxels representing the solid skeleton is translated into the composition of the material inside one voxel, in terms of the nanoporosity embedded in a dense CEL2 glass-ceramic matrix.
View Article and Find Full Text PDFWe present a study on lysozyme dissolved in mixtures of water and urea, which is ubiquitously used as a protein denaturant. Despite the wide use of urea, the basic molecular mechanisms inducing protein unfolding are not still clarified. Small-angle neutron scattering (SANS) experiments have been performed using little amounts of denaturant in solutions in order to investigate the urea effect on lysozyme preceding the unfolding process.
View Article and Find Full Text PDFFolded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data.
View Article and Find Full Text PDFWe report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived.
View Article and Find Full Text PDFThe surface of polyhydroxybutyrate (PHB) storage granules in bacteria is covered mainly by proteins referred to as phasins. The layer of phasins stabilizes the granules and prevents coalescence of separated granules in the cytoplasm and nonspecific binding of other proteins to the hydrophobic surfaces of the granules. Phasin PhaP1(Reu) is the major surface protein of PHB granules in Ralstonia eutropha H16 and occurs along with three homologues (PhaP2, PhaP3, and PhaP4) that have the capacity to bind to PHB granules but are present at minor levels.
View Article and Find Full Text PDFIn solution small-angle neutron scattering has been used to study the solvation properties of lysozyme dissolved in water/glycerol mixtures. To detect the characteristics of the protein-solvent interface, 35 different experimental conditions (i.e.
View Article and Find Full Text PDFTwo binary aqueous mixtures which contain the small amphiphilic molecules TMAO (trimethylamine-N-oxide) and TBA (tert-butyl alcohol) have been investigated by molecular dynamics simulations and NMR chemical shift and self-diffusion measurements. TMAO is an osmolyte, while TBA is a monohydrate alcohol. Both possess bulky hydrophobic groups and polar heads, namely, NO in TMAO and OH in TBA.
View Article and Find Full Text PDFTwo mesophilic/thermophilic variants of the G-domain of the elongation factor Tu were studied via molecular dynamics simulations. By analyzing the simulation data via the Voronoi space tessellation, we have found that the two proteins have the same macromolecular packing, while the water-exposed surface area is larger for the thermophile. A larger coordination with water is probably due to a peculiar corrugation of the exposed surface of this species.
View Article and Find Full Text PDFWe have isolated two genes from Zea mays encoding proteins of 82 and 81 kD that are highly homologous to the Drosophila 83-kD heat shock protein gene and have analyzed the structure and pattern of expression of these two genes during heat shock and development. Southern blot analysis and hybrid select translations indicate that the highly homologous hsp82 and hsp81 genes are members of a small multigene family composed of at least two and perhaps three or more gene family members. The deduced amino acid sequence of these proteins based on the nucleotide sequence of the coding regions shows 64-88% amino acid homology to other hsp90 family genes from human, yeast, Drosophila, and Arabidopsis.
View Article and Find Full Text PDFProg Nucleic Acid Res Mol Biol
June 1992
A maize (Zea mays L.) genomic clone (Zmempr 9') was isolated on the basis of its homology to a meiotically expressed Lilium sequence. Radiolabeled probe made from the maize genomic clone detected complementary RNA at high fidelity.
View Article and Find Full Text PDFResults Probl Cell Differ
April 1992
A temperature shift from 25 to 41 degrees C initiates the synthesis of a specific set of proteins in maize, including a peptide of 60 kilodaltons. Using an in vitro mitochondrial protein synthesizing system, we provide evidence that this 60-kDa heat shock protein is encoded within the organelle. Further support for this heat-induced protein being encoded within mitochondria is that its synthesis is inhibited in whole seedlings by chloramphenicol.
View Article and Find Full Text PDFThe heat shock proteins of the virilis group of Drosophila are analyzed by one- and two-dimensional polyacrylamide gel analysis. This group consists of the two closely related but distinct virilis and montana phylads. The analysis reveals that some of the heat shock proteins are highly conserved among the two phylads while others are not.
View Article and Find Full Text PDFThe cellular distribution in Drosophila Kc cells of [35S]methionine-labeled heat shock proteins has been examined by 0.2% Nonidet P-40-mediated cell lysis and Na-deoxycholate-Tween 40 extraction of the nuclei. The 83,000-dalton heat shock protein was limited to the detergent extracts while the remaining heat shock proteins were found both in a soluble pool in the detergent extracts and in a bound pool in the nuclei.
View Article and Find Full Text PDFUsing in situ nucleic acid hybridizations, the genes that code for 28, 18 and 5S rRNA have been localized in the polytene chromosomes of Drosophila tumiditarsus. The 5S genes are found at a single site near the centromere of the second chromosome, whereas the 28 and 18S genes are found at the nucleolar organizer region of the dot chromosome. The dot chromosome has been previously described as alpha-heterochromatic.
View Article and Find Full Text PDF