Carbon dots are a subset of carbon nanomaterials with fluorescent properties that render them attractive for various potential applications such as bioimaging and sensing. The past years saw significant progress being made in the understanding of the formation and the underlying fluorescent property. Nevertheless, efforts are still necessary to unravel the formation of carbon dots and the origin of their luminescence, especially for new types of precursor material such as polycyclic aromatic compounds.
View Article and Find Full Text PDFIn this work, SiO@α-FeO core-shell decorated RGO nanocomposites were prepared via a simple sol-gel method. The nanocomposites were prepared with different weight percentages (10, 30, and 50 wt %) of the SiO@α-FeO core-shell on RGO, and the effects on the structural and optical properties were identified. The photocatalytic reduction and oxidation properties of the nanocomposites in the gas phase were assessed through the reduction of CO and oxidation of ethanol using in-situ diffuse-reflectance infrared fourier transform spectroscopy (DRIFT).
View Article and Find Full Text PDFIn this study, chitosan-copper (CS-Cu) nanocomposite was synthesized without the aid of any external chemical reducing agents. The optical, structural, spectral, thermal and morphological analyses were carried out by several techniques. The prepared nanocomposite acts as a photocatalyst for the removal of Rhodamine B (RhB) and Conge red (CR) dyes under visible light irradiation.
View Article and Find Full Text PDFChitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
October 2013
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The Co(III) ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octa-hedral geometry. In the crystal, N-H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
View Article and Find Full Text PDF