Understanding excited-state intramolecular proton transfer (ESIPT) is essential for designing organic molecules to enhance photophysical and luminophore properties in the development of optoelectronic devices. In this context, an attempt has been made to understand the impact of substituents on the ESIPT process of 2-(oxazolinyl)-phenol. Electron donating (EDG: -NH2, -OCH3, and -CH3) and electron withdrawing (EWG: -Cl, -Br, -COOH, -CF3, -CN, and -NO2) substitutions have been computationally designed and screened through density functional theory (DFT) and time-dependent density-functional theory (TDDFT) calculations.
View Article and Find Full Text PDF