Acute pharmacological inhibition of acid-sensing ion channel 1a (ASIC1a) is efficacious in rodent models in alleviating symptoms of neurological diseases such as stroke and multiple sclerosis. Thus, ASIC1a is a promising therapeutic target and selective ligands that modulate it are invaluable research tools and potential therapeutic leads. Spider venoms have provided an abundance of voltage-gated ion channel modulators, however, only one ASIC modulator (PcTx1) has so far been isolated from this source.
View Article and Find Full Text PDFTissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a).
View Article and Find Full Text PDFBackground And Purpose: Chronic pain is a serious worldwide health issue, with current analgesics having limited efficacy and dose-limiting side effects. Humans with loss-of-function mutations in the voltage-gated sodium channel NaV 1.7 (hNaV 1.
View Article and Find Full Text PDFVoltage-gated sodium (Na(V)) channels play a central role in the propagation of action potentials in excitable cells in both humans and insects. Many venomous animals have therefore evolved toxins that modulate the activity of Na(V) channels in order to subdue their prey and deter predators. Spider venoms in particular are rich in Na(V) channel modulators, with one-third of all known ion channel toxins from spider venoms acting on Na(V) channels.
View Article and Find Full Text PDFSpiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors.
View Article and Find Full Text PDF