Publications by authors named "Sinenhlanhla X H Mthembu"

Background: Neuregulin 4 (Nrg4) is a brown adipose tissue-derived adipokine that greatly affects systemic metabolism and improves metabolic derangements. Although abnormal circulating levels of Nrg4 are common in obesity, it remains elusive whether low or elevated levels of this batokine are associated with the onset of metabolic diseases.

Aim: To assess Nrg4 levels and its role as a feasible biomarker to predict the severity of obesity, gestational diabetes mellitus (GDM), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD).

View Article and Find Full Text PDF

Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells.

View Article and Find Full Text PDF

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents.

View Article and Find Full Text PDF

Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D.

View Article and Find Full Text PDF
Article Synopsis
  • * Sulforaphane has shown promise in combating oxidative stress and inflammation, which are linked to various metabolic issues such as diabetic cardiomyopathy, neuropathy, and nephropathy, through mechanisms like activating specific proteins that help protect against these conditions.
  • * Clinical studies indicate that diets rich in sulforaphane can enhance metabolic health and reduce cardiovascular risks in individuals with type 2 diabetes, highlighting its potential as a therapeutic nutraceutical, along with discussions on its bioavailability and effects on diabetes progression.
View Article and Find Full Text PDF

Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity.

View Article and Find Full Text PDF

Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress.

View Article and Find Full Text PDF

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D.

View Article and Find Full Text PDF

is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia.

View Article and Find Full Text PDF

Skeletal muscle insulin resistance and mitochondrial dysfunction are some of the major pathological defects implicated in the development of type 2 diabetes (T2D). Therefore, it has become necessary to understand how common interventions such as physical exercise and caloric restriction affect metabolic function, including physiological processes that implicate skeletal muscle dysfunction within a state of T2D. This review critically discusses evidence on the impact of physical exercise and caloric restriction on markers of insulin resistance and mitochondrial dysfunction within the skeletal muscle of patients with T2D or related metabolic complications.

View Article and Find Full Text PDF

Chronic inflammation remains an essential complication in the pathogenesis and aggravation of metabolic diseases. There is a growing interest in the use of medicinal plants or food-derived bioactive compounds for their antioxidant and anti-inflammatory properties to improve metabolic function. For example, rutin, a flavonol derivative of quercetin that is found in several medicinal plants and food sources has displayed therapeutic benefits against diverse metabolic diseases.

View Article and Find Full Text PDF

Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an important risk factor for the development of cardiovascular diseases (CVDs). Accordingly, increased epicardial fat thickness (EFT) implicates the exacerbation of pathological mechanisms involving oxidative stress and inflammation within the heart, which may accelerate the development of CVDs. This explains increased interest in targeting EFT reduction to attenuate the detrimental effects of oxidative stress and inflammation within the setting of metabolic syndrome.

View Article and Find Full Text PDF

The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel blocker, antimycin A (6.25 µM), for 12 h to induce mitochondrial dysfunction.

View Article and Find Full Text PDF

Our group has progressively reported on the impact of bioactive compounds found in rooibos () and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.

View Article and Find Full Text PDF

Emerging evidence suggests that epicardial fat thickness (EFT) may be a critical feature to understand cardiac health and determine the risk of heart failure. The current review critically assesses and discusses evidence on the efficiency of measuring EFT, in comparison to the well-known markers B-type natriuretic peptide (BNP) and its N-terminal fragment pro-B-type natriuretic peptide (NT-proBNP), as a prognostic and diagnostic approach in individuals with or at risk of heart failure. A systematic approach was undertaken to search major databases, PubMed, Scopus, Google Scholar and the Cochrane library to identify studies that quantified EFT and serum BNP/NT-proBNP levels in individuals with or at risk of heart failure.

View Article and Find Full Text PDF

It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function.

View Article and Find Full Text PDF

Insulin resistance and mitochondrial dysfunction are characteristic features of type 2 diabetes mellitus. However, a causal relationship between insulin resistance and mitochondrial dysfunction has not been fully established in the skeletal muscle. Accordingly, we have evaluated the effect of antimycin A (AA), a mitochondrial electron transport chain complex III inhibitor, on mitochondrial bioenergetics and insulin signaling by exposing C2C12 skeletal muscle cells to its concentrations of 3.

View Article and Find Full Text PDF

Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models.

View Article and Find Full Text PDF

The current study explored the effect of isoorientin on the metabolic activity and lipid accumulation in fully differentiated 3T3-L1 adipocytes. To achieve this, the 3T3-L1 pre-adipocytes were differentiated for eight days and treated with various concentrations of isoorientin (0.1-100 μM) for four hours.

View Article and Find Full Text PDF