Publications by authors named "Sinead A Ryan"

We present a method for achieving hyperspectral magnetic imaging in the extreme ultraviolet (EUV) region based on high-harmonic generation (HHG). By interfering two mutually coherent orthogonally-polarized and laterally-sheared HHG sources, we create an EUV illumination beam with spatially-dependent ellipticity. By placing a magnetic sample in the beamline and sweeping the relative time delay between the two sources, we record a spatially resolved interferogram that is sensitive to the EUV magnetic circular dichroism of the sample.

View Article and Find Full Text PDF

The direct manipulation of spins via light may provide a path toward ultrafast energy-efficient devices. However, distinguishing the microscopic processes that can occur during ultrafast laser excitation in magnetic alloys is challenging. Here, we study the Heusler compound CoMnGa, a material that exhibits very strong light-induced spin transfers across the entire M-edge.

View Article and Find Full Text PDF

High harmonic generation (HHG) makes it possible to measure spin and charge dynamics in materials on femtosecond to attosecond timescales. However, the extreme nonlinear nature of the high harmonic process means that intensity fluctuations can limit measurement sensitivity. Here we present a noise-canceled, tabletop high harmonic beamline for time-resolved reflection mode spectroscopy of magnetic materials.

View Article and Find Full Text PDF

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection. Although TMMs have been observed in skyrmion lattices, spinor Bose-Einstein condensates, chiral magnets, vortex rings and vortex cores, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature.

View Article and Find Full Text PDF

Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform-a super-resolution time-frequency analytical method-to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material.

View Article and Find Full Text PDF