Publications by authors named "Sine Reker Hadrup"

Neoantigen immunogenicity prediction is a highly challenging problem in the development of personalised medicines. Low reactivity rates in called neoantigens result in a difficult prediction scenario with limited training datasets. Here we describe ImmugenX, a modular protein language modelling approach to immunogenicity prediction for CD8+ reactive epitopes.

View Article and Find Full Text PDF

The UV-mediated peptide exchange has enabled the generation of multiple different MHC multimer specificities in parallel, surpassing tedious individual refolding of MHC molecules with peptide ligands. Murine models are acknowledged as an effective tool for preclinical research to advance our understanding of immunological mechanisms, with the potential translatability of key learnings from mouse models to the clinic. The common inbred mouse strain BALB/c is frequently used in immunological research.

View Article and Find Full Text PDF

Background: Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy.

View Article and Find Full Text PDF

Background: Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition.

Method: To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy.

View Article and Find Full Text PDF

Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes.

View Article and Find Full Text PDF

CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses.

View Article and Find Full Text PDF

Background: We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP).

Method: A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers.

View Article and Find Full Text PDF

Background: Kidney transplant recipients receive maintenance immunosuppressive therapy to avoid allograft rejection resulting in increased risk of infections and infection-related morbidity and mortality. Approximately 98% of adults are infected with varicella zoster virus, which upon reactivation causes herpes zoster. The incidence of herpes zoster is higher in kidney transplant recipients than in immunocompetent individuals, and kidney transplant recipients are at increased risk of severe herpes zoster-associated disease.

View Article and Find Full Text PDF

Background: Adoptive cell therapy (ACT) has shown promising results for the treatment of cancer and viral infections. Successful ACT relies on ex vivo expansion of large numbers of desired T-cells with strong cytotoxic capacity and in vivo persistence, which constitutes the greatest challenge to current ACT strategies. Here, in this study, we present a novel technology for ex vivo expansion of antigen-specific T-cells; artificial antigen-presenting scaffolds (Ag-scaffolds) consisting of a dextran-polysaccharide backbone, decorated with combinations of peptide-Major Histocompatibility Complex (pMHC), cytokines and co-stimulatory molecules, enabling coordinated stimulation of antigen-specific T-cells.

View Article and Find Full Text PDF

In this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2).

View Article and Find Full Text PDF

Checkpoint inhibition (CPI) therapy and adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL-based ACT) are the two most effective immunotherapies for the treatment of metastatic melanoma. While CPI has been the dominating therapy in the past decade, TIL-based ACT is beneficial for individuals even after progression on previous immunotherapies. Given that notable differences in response have been made when used as a subsequent treatment, we investigated how the qualities of TILs changed when the microenvironment of intact tumor fragments were modulated with checkpoint inhibitors targeting programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4).

View Article and Find Full Text PDF

Recent findings have positioned tumor mutation-derived neoepitopes as attractive targets for cancer immunotherapy. Cancer vaccines that deliver neoepitopes via various vaccine formulations have demonstrated promising preliminary results in patients and animal models. In the presented work, we assessed the ability of plasmid DNA to confer neoepitope immunogenicity and anti-tumor effect in two murine syngeneic cancer models.

View Article and Find Full Text PDF
Article Synopsis
  • Novel single-cell technologies can efficiently pair T cell receptor (TCR) sequences with their corresponding peptide-MHC recognition motifs using DNA barcode-labeled reagents.
  • The analysis of single-cell sequencing data faces challenges such as dropout and noise, which require careful handling in processing.
  • The newly proposed method, ITRAP, filters out these artifacts to produce reliable TCR-pMHC sequence data, successfully identifying 1494 high-confidence TCR-pMHC pairs from 4135 single cells in a study involving 16 healthy donors.
View Article and Find Full Text PDF

Immune checkpoint inhibition for the treatment of cancer has provided a breakthrough in oncology, and several new checkpoint inhibition pathways are currently being investigated regarding their potential to provide additional clinical benefit. However, only a fraction of patients respond to such treatment modalities, and there is an urgent need to identify biomarkers to rationally select patients that will benefit from treatment. In this study, we explore different tumor associated characteristics for their association with favorable clinical outcome in a diverse cohort of cancer patients treated with checkpoint inhibitors.

View Article and Find Full Text PDF

Background: Life-long immunosuppressive treatment after liver transplantation (LT) prevents graft rejection but predisposes the LT recipient to infections. Herpesvirus infections are associated with morbidity and mortality among LT recipients. Among those, especially cytomegalovirus (CMV) and varicella-zoster virus (VZV) pose challenges after LT.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the efficacy and safety of a vaccine combining Bcl-XL-derived peptides and the adjuvant CAF09b in patients with hormone-sensitive prostate cancer, aiming to enhance immune responses against cancer cells.
  • Twenty patients were divided into two groups: one received intramuscular (IM) vaccinations followed by intraperitoneal (IP), while the other group received IP first and then IM, monitoring safety and immune response.
  • Results showed no serious adverse events and indicated that patients receiving the IP first demonstrated stronger and earlier immune responses, with significant activation of CD4 and CD8 T cell markers after vaccination.
View Article and Find Full Text PDF

Patients with hematological malignancies are prioritized for COVID-19 vaccine due to their high risk for severe SARS-CoV-2 infection-related disease and mortality. To understand T cell immunity, its long-term persistence, and its correlation with antibody response, we evaluated the BNT162b2 COVID-19 mRNA vaccine-specific immune response in chronic lymphocytic leukemia (CLL) and myeloid dysplastic syndrome (MDS) patients. Longitudinal analysis of CD8 T cells using DNA-barcoded peptide-MHC multimers covering the full SARS-CoV-2 Spike-protein (415 peptides) showed vaccine-specific T cell activation and persistence of memory T cells up to six months post-vaccination.

View Article and Find Full Text PDF

Purpose: We hypothesized that resistance to hypomethylating agents (HMA) among patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA.

Patients And Methods: We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginning with guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is standard-of-care for patients with metastatic melanoma. It may re-invigorate T cells recognizing tumors, and several tumor antigens have been identified as potential targets. However, little is known about the dynamics of tumor antigen-specific T cells in the circulation, which might provide valuable information on ICB responses in a minimally invasive manner.

View Article and Find Full Text PDF

CD8 T cell reactivity towards tumor mutation-derived neoantigens is widely believed to facilitate the antitumor immunity induced by immune checkpoint blockade (ICB). Here we show that broadening in the number of neoantigen-reactive CD8 T cell (NART) populations between pre-treatment to 3-weeks post-treatment distinguishes patients with controlled disease compared to patients with progressive disease in metastatic urothelial carcinoma (mUC) treated with PD-L1-blockade. The longitudinal analysis of peripheral CD8 T cell recognition of patient-specific neopeptide libraries consisting of DNA barcode-labelled pMHC multimers in a cohort of 24 patients from the clinical trial NCT02108652 also shows that peripheral NARTs derived from patients with disease control are characterised by a PD1 Ki67 effector phenotype and increased CD39 levels compared to bystander bulk- and virus-antigen reactive CD8 T cells.

View Article and Find Full Text PDF

The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8 T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985).

View Article and Find Full Text PDF