Publications by authors named "Sine Lo Svenningsen"

Stress-induced prophages commonly "jump ship" by inducing lysis via the host SOS response. In a recent work, Uppalapati et al. reports an alternate, stress-selective strategy.

View Article and Find Full Text PDF

Phage predation is an important factor for controlling the bacterial biomass. At face value, dense microbial habitats are expected to be vulnerable to phage epidemics due to the abundance of fresh hosts immediately next to any infected bacteria. Despite this, the bacterial microcolony is a common habitat for bacteria in nature.

View Article and Find Full Text PDF

Bacterial populations communicate using quorum-sensing (QS) molecules and switch on QS regulation to engage in coordinated behaviour such as biofilm formation or virulence. The marine fish pathogen Vibrio anguillarum harbours several QS systems, and our understanding of its QS regulation is still fragmentary. Here, we identify the VanT-QS regulon and explore the diversity and trajectory of traits under QS regulation in Vibrio anguillarum through comparative transcriptomics of two wildtype strains and their corresponding mutants artificially locked in QS-on (ΔvanO) or QS-off (ΔvanT) states.

View Article and Find Full Text PDF

Protein synthesis is the most energetically costly process in the cell. Consequently, it is a tightly regulated process, and regulation of the resources allocated to the protein synthesis machinery is at the heart of bacterial growth optimization theory. However, the molecular mechanisms that result in dynamic downregulation of protein synthesis in response to nutrient starvation are not well described.

View Article and Find Full Text PDF

The stationary phase is the general term for the state a bacterial culture reaches when no further increase in cell mass occurs due to exhaustion of nutrients in the growth medium. Depending on the type of nutrient that is first depleted, the metabolic state of the stationary phase cells may vary greatly, and the subsistence strategies that best support cell survival may differ. As ribosomes play a central role in bacterial growth and energy expenditure, ribosome preservation is a key element of such strategies.

View Article and Find Full Text PDF

Prophage 919TP is widely distributed among and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved.

View Article and Find Full Text PDF

The vast majority of a bacterial population is killed when treated with a lethal concentration of antibiotics. The time scale of this killing is often comparable with the bacterial generation time before the addition of antibiotics. Yet, a small subpopulation typically survives for an extended period.

View Article and Find Full Text PDF

Biogenic polyamines are natural aliphatic polycations formed from amino acids by biochemical pathways that are highly conserved from bacteria to humans. Their cellular concentrations are carefully regulated and dysregulation causes severe cell growth defects. Polyamines have high affinity for nucleic acids and are known to interact with mRNA, tRNA and rRNA to stimulate the translational machinery, but the exact molecular mechanism(s) for this stimulus is still unknown.

View Article and Find Full Text PDF

Three out of the seven ribosomal RNA operons in end in dual terminator structures. Between the two terminators of each operon is a short sequence that we report here to be an sRNA gene, transcribed as part of the ribosomal RNA primary transcript by read-through of the first terminator. The sRNA genes (, and ) from the three operons (, and ) are more than 98% identical, and pull-down experiments show that their transcripts interact with Hfq and CsrA.

View Article and Find Full Text PDF

Zonula occludens toxin (Zot) is a conserved protein in filamentous vibriophages and has been reported as a putative toxin in . Recently, widespread distribution of encoding prophages was found among marine species, including environmental isolates. However, little is known about the dynamics of these prophages beyond .

View Article and Find Full Text PDF

Temperate ϕH20-like phages are repeatedly identified at geographically distinct areas as free phage particles or as prophages of the fish pathogen Vibrio anguillarum. We studied mutants of a lysogenic isolate of V. anguillarum locked in the quorum-sensing regulatory modes of low (ΔvanT) and high (ΔvanO) cell densities by in-frame deletion of key regulators of the quorum-sensing pathway.

View Article and Find Full Text PDF

cells respond to a period of famine by globally reorganizing their gene expression. The changes are known as the stringent response, which is orchestrated by the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in gene expression are particularly well studied in the case of amino acid starvation.

View Article and Find Full Text PDF

Ribosomes are absolutely essential for growth but are, moreover, energetically costly to produce. Therefore, it is important to adjust the cellular ribosome levels according to the environmental conditions in order to obtain the highest possible growth rate while avoiding energy wastage on excess ribosome biosynthesis. Here we show, by three different methods, that the ribosomal RNA content of Escherichia coli is downregulated within minutes of the removal of an essential nutrient from the growth medium, or after transcription initiation is inhibited.

View Article and Find Full Text PDF

Bacteriophages (phages) have been shaping bacterial ecology and evolution for millions of years, for example, by selecting for defence strategies. Evidence supports that bacterial biofilm formation is one such strategy and that biofilm-mediated protection against phage infection depends on maturation and composition of the extracellular matrix. Interestingly, studies have revealed that phages can induce and strengthen biofilms.

View Article and Find Full Text PDF

Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species. Although phage therapy has been proposed as an alternative treatment, the defense mechanisms against phage infection in V. anguillarum and their impact on host function are not fully understood.

View Article and Find Full Text PDF

Quorum sensing is a vital property of bacteria that enables community-wide coordination of collective behaviors. A key example of such a behavior is biofilm formation, in which groups of bacteria invest in synthesizing a protective, joint extracellular matrix. Quorum sensing involves the production, release, and subsequent detection of extracellular signaling molecules called autoinducers.

View Article and Find Full Text PDF

Production of the translation apparatus of E. coli is carefully matched to the demand for protein synthesis posed by a given growth condition. For example, the fraction of RNA polymerases that transcribe rRNA and tRNA drops from 80% during rapid growth to 24% within minutes of a sudden amino acid starvation.

View Article and Find Full Text PDF

Transfer RNA (tRNA) is an essential part of the translational machinery in any organism. tRNAs bind and transfer amino acids to the translating ribosome. The relative levels of different tRNAs, and the ratio of aminoacylated tRNA to total tRNA, known as the charging level, are important factors in determining the accuracy and speed of translation.

View Article and Find Full Text PDF

Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids.

View Article and Find Full Text PDF

A key event in the lifecycle of a temperate bacteriophage is the choice between lysis and lysogeny upon infection of a susceptible host cell. In a recent paper, we showed that a prolonged period exists after the decision to lysogenize, during which bacteriophage λ can abandon the initial decision, and instead develop lytically, as a response to the accumulation of the late lytic regulatory protein Q. Here, we present evidence that expression of Q does not induce replication of λ DNA, suggesting that the DNA to be packaged into the resulting phage progeny was already present at the time of the initial decision to lysogenize.

View Article and Find Full Text PDF

Gene regulatory cascades (GRCs) are common motifs in cellular molecular networks. A given logical function in these cascades, such as the repression of the activity of a transcription factor, can be implemented by a number of different regulatory mechanisms. The potential consequences for the dynamic performance of the GRC of choosing one mechanism over another have not been analysed systematically.

View Article and Find Full Text PDF

Unlabelled: Selection for phage resistance is a key driver of bacterial diversity and evolution, and phage-host interactions may therefore have strong influence on the genetic and functional dynamics of bacterial communities. In this study, we found that an important, but so far largely overlooked, determinant of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V.

View Article and Find Full Text PDF

A key event in development is the irreversible commitment to a particular cell fate, which may be concurrent with or delayed with respect to the initial cell fate decision. In this work, we use the paradigmatic bacteriophage λ lysis-lysogeny decision circuit to study the timing of commitment. The lysis-lysogeny decision is made based on the expression trajectory of CII.

View Article and Find Full Text PDF

One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly.

View Article and Find Full Text PDF

Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation.

View Article and Find Full Text PDF