It has been proposed that an increased susceptivity to oxidative stress caused by the absence of the protein dystrophin from the inner surface of the sarcolemma is a trigger of skeletal muscle necrosis in the destructive dystrophin deficient muscular dystrophies. Here we use the mdx mouse model of human Duchenne Muscular Dystrophy to test the hypothesis that adding the antioxidant NAC at 2% to drinking water for six weeks will treat the inflammatory phase of the dystrophic process and reduce pathological muscle fiber branching and splitting resulting in a reduction of mass in mdx fast-twitch EDL muscles. Animal weight and water intake was recorded during the six weeks when 2% NAC was added to the drinking water.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? What are the early effects of dystrophin deficiency on sarcoplasmic reticulum Ca handling in the mdx mouse? What is the main finding and its importance? In the mdx mouse, Ca handling by the sarcoplasmic reticulum is little affected by the absence of dystrophin when looking at fibres without branches that have recently regenerated after massive myonecrosis. This has important implications for our understanding of Ca pathology in the mdx mouse.
Abstract: There is a variety of results in the literature regarding the effects of dystrophin deficiency on the Ca handling properties of the sarcoplasmic reticulum (SR) in the mdx mouse, an animal model of Duchenne muscular dystrophy.
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4-22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mice.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration.
View Article and Find Full Text PDFA striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, or "tipping point," the branches in and of themselves are the site of contraction-induced rupture.
View Article and Find Full Text PDFAcute neuronal tissue preparations, brain slices and retinal wholemount, can usually only be maintained for 6 - 8 h following dissection. This limits the experimental time, and increases the number of animals that are utilized per study. This limitation specifically impacts protocols such as calcium imaging that require prolonged pre-incubation with bath-applied dyes.
View Article and Find Full Text PDFProtein kinase CK2 is a pleiotropic tetrameric enzyme, regulating numerous biological processes from cell proliferation to stress response. This study demonstrates for the first time that CK2 is involved in the regulation of metal uptake and toxicity in neuronal cells. After the determination of inhibitory concentrations (IC50) for a range of metal salts (ZnSO4, Al(mal)3, CoCl2, CrO3, NaAsO2 and CaCl2) in Neuro-2a mouse neuroblastoma cells, the effect of CK2 on metal toxicity was investigated by three lines of experiments using CK2 inhibitors, metal ion specific fluorophores and siRNA-mediated knockdown of CK2 expression.
View Article and Find Full Text PDFEffective tissue bioadhesion of rose bengal-chitosan films can be achieved by photoactivation using a green laser. In this study, lysozyme was incorporated in these films to enhance the rate of depolymerization and assess the laser impact on lysozyme. The lysozyme loaded films exhibited a 21% mass loss after 4 weeks implantation in rats while control films (without lysozyme) had only 7% mass loss.
View Article and Find Full Text PDF