Publications by authors named "Sindy J Rodriguez"

The variety of possible benzene isomers may provide a fundamental basis for understanding structural and reactivity patterns in organic chemistry. However, the vast majority of these isomers remain unsynthesized, while most of the experimentally known species are only moderately stable. Consequently, there is a high probability that the theoretically proposed isomers would also be barely metastable, a factor that must be taken into account if their creation in the laboratory is sought.

View Article and Find Full Text PDF

In this work, we carried out an experimental and theoretical study on the formation of self-assembled monolayers of L-cysteine molecules on gold surfaces in the presence of methanol as a solvent. We report for the first time L-cysteine and methanol ordered structures forming a mixed self-assembled mono-layer on Au(100) surfaces under ambient conditions. Finger-like ordered structures with a relative height of 0.

View Article and Find Full Text PDF

Pyrazole derivatives are key in crystal engineering and liquid crystal fields and thrive in agriculture, pharmaceutical, or biomedicine industries. Such versatility relies in their supramolecular bond adaptability when forming hydrogen bonds or metal-pyrazole complexes. Interestingly, the precise structure of pyrazole-based macrocycles forming widespread porous structures is still unsolved.

View Article and Find Full Text PDF

Using first-principles calculations based on density functional theory (DFT), we study the aluminum fluoride (AlF) intercalation in graphite as a new possibility to use this molecule in rechargeable batteries, and understand its role when used as a component of the solvent. We discuss the most stable configuration of the AlF molecule in graphite for stage-2 and stage-1 and the diffusion study of the molecule, the migration pathways and the energy barriers. Our results show an average voltage of 3.

View Article and Find Full Text PDF

We modeled a type of field-effect transistor device based on graphene for the recognition of amino acids with a potential application in the building of a protein sequencer. The theoretical model used was a combination of density functional theory (DFT) with the non-equilibrium Green's function (NEGF) in order to describe the coherent transport in molecular devices. First, we studied the physisorption of each amino acid on a graphene sheet and we reported the adsorption energy, the adsorption distances, the equilibrium configuration and the charge transfer of ten amino acids that can be considered as representative of all of the amino acids: histidine (His), alanine (Ala), aspartic acid (Asp), tyrosine (Tyr), arginine (Arg), glutamic acid (Glu), glycine (Gly), phenylalanine (Phe), proline (Pro) and lysine (Lys).

View Article and Find Full Text PDF