Publications by authors named "Sindu Krishna"

SUCLA2 defects have been associated with mitochondrial DNA (mtDNA) depletion and the triad of hypotonia, dystonia/Leigh-like syndrome, and deafness. A 9-year-old Brazilian boy of consanguineous parents presented with psychomotor delay, deafness, myopathy, ataxia, and chorea. Despite the prominent movement disorder, brain magnetic resonance imaging (MRI) was normal while H-magnetic resonance spectroscopy (MRS) showed lactate peaks in the cerebral cortex and lateral ventricles.

View Article and Find Full Text PDF

Primary human CoQ(10) deficiencies are clinically heterogeneous diseases caused by mutations in PDSS2 and other genes required for CoQ(10) biosynthesis. Our in vitro studies of PDSS2 mutant fibroblasts, with <20% CoQ(10) of control cells, revealed reduced activity of CoQ(10)-dependent complex II+III and ATP synthesis, without amplification of reactive oxygen species (ROS), markers of oxidative damage, or antioxidant defenses. In contrast, COQ2 and ADCK3 mutant fibroblasts, with 30-50% CoQ(10) of controls, showed milder bioenergetic defects but significantly increased ROS and oxidation of lipids and proteins.

View Article and Find Full Text PDF

A 25-year-old man with exertional myoglobinuria had no evidence of hemolytic anemia, but he had severe parkinsonism that was responsive to levodopa. Phosphoglycerate kinase (PGK) activity was markedly decreased in muscle, and molecular analysis of the PGK1 gene identified the p.T378P mutation that was recently reported in a patient with isolated myopathy.

View Article and Find Full Text PDF

We describe an 18-year-old man with muscle cramps and recurrent exertional myoglobinuria, without hemolytic anemia or brain dysfunction. Phosphoglycerate kinase (PGK) deficiency was documented in muscle and erythrocytes and molecular analysis of the PGK1 gene identified a novel mutation, T378P. This is the ninth case presenting with isolated myopathy, whereas most other patients show hereditary non-spherocytic hemolytic anemia alone or associated with brain dysfunction, and a few patients have myopathy plus brain involvement.

View Article and Find Full Text PDF

Background: The number of molecular causes of MELAS (a syndrome consisting of mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) and Leigh syndrome (LS) has steadily increased. Among these, mutations in the ND5 gene (OMIM 516005) of mitochondrial DNA are important, and the A13513A change has emerged as a hotspot.

Objective: To describe the clinical features, muscle pathological and biochemical characteristics, and molecular study findings of 12 patients harboring the G13513A mutation in the ND5 gene of mitochondrial DNA compared with 14 previously described patients with the same mutation.

View Article and Find Full Text PDF

Coenzyme Q(10) (CoQ(10)) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. Last year, we reported the first mutations in CoQ(10) biosynthetic genes, COQ2, which encodes 4-parahydroxybenzoate: polyprenyl transferase; and PDSS2, which encodes subunit 2 of decaprenyl diphosphate synthase. However, the pathogenic mechanisms of primary CoQ(10) deficiency have not been well characterized.

View Article and Find Full Text PDF

A 14-year-old boy had exercise intolerance, weakness, ataxia, and lactic acidosis. Because his muscle biopsy showed a mosaic pattern of fibers staining intensely with the succinate dehydrogenase reaction but not at all with the cytochrome c oxidase reaction, we sequenced his mitochondrial DNA and found a novel mutation (C14680A) in the gene for tRNAGlu. The mutation was present in accessible tissues from the asymptomatic mother but not from a brother with Asperger syndrome.

View Article and Find Full Text PDF

A 6-year-old boy had progressive muscle weakness since age 4 and emotional problems diagnosed as Asperger syndrome. His mother and two older siblings are in good health and there is no family history of neuromuscular disorders. Muscle biopsy showed ragged-red and cytochrome coxidase (COX)-negative fibers.

View Article and Find Full Text PDF

Cockayne syndrome and xeroderma pigmentosum-Cockayne syndrome complex are rare autosomal recessive disorders with poorly understood biology. They are characterized by profound postnatal brain and somatic growth failure and by degeneration of multiple tissues resulting in cachexia, dementia, and premature aging. They result in premature death, usually in childhood, exceptionally in adults.

View Article and Find Full Text PDF

Background: Mitochondrial DNA depletion syndrome is an autosomal recessive disorder characterized by decreased mitochondrial DNA copy numbers in affected tissues. It has been linked to 4 genes involved in deoxyribonucleotide triphosphate metabolism: thymidine kinase 2 (TK2), deoxyguanosine kinase (DGUOK), polymerase gamma (POLG), and SUCLA2, the gene encoding the beta-subunit of the adenosine diphosphate-forming succinyl coenzyme A synthetase ligase.

Objective: To highlight the variability in the clinical spectrum of TK2-related mitochondrial DNA depletion syndrome.

View Article and Find Full Text PDF

Three patients with different clinical phenotypes harbored the same point mutation at nucleotide 14709 (T14709C) in the tRNAGlu gene of mitochondrial DNA (mtDNA). The first patient was a 21-month-old child with severe congenital myopathy, respiratory distress and mild mental retardation. Muscle biopsy showed about 12% cytochrome c oxidase (COX)-negative ragged-red fibers (RRFs), and markedly decreased activities of mitochondrial respiratory chain complexes I, III and IV.

View Article and Find Full Text PDF

A 3 1/2-year-old boy presented with megaloblastic anemia and recurrent episodes of severe lactic acidosis and coma. At age 4 years, he developed sepsis and died; postmortem examination failed to show any gross abnormality in any tissue. Biochemical analysis of muscle showed decreased activities for all respiratory chain enzymes except complex II.

View Article and Find Full Text PDF

A 19-year-old woman complained of life-long exercise intolerance and had chronic lactic acidosis. Neurological examination was normal, but muscle biopsy showed cytochrome c oxidase-positive fibers and marked complex III deficiency. Sequence analysis showed a novel stop-codon mutation (G15761A) in the mitochondrial DNA (mtDNA)-encoded cytochrome b gene, resulting in loss of the last 41 amino acids of the protein.

View Article and Find Full Text PDF

Single deletions of mitochondrial DNA (mtDNA) are associated with three major clinical conditions: Kearns-Sayre syndrome, a multisystem disorder; Pearson syndrome (PS), a disorder of the hematopoietic system; and progressive external ophthalmoplegia (PEO), primarily affecting the ocular muscles. Typically, single mtDNA deletions are sporadic events, since the mothers, siblings, and offspring of affected individuals are unaffected. We studied a woman who presented with PEO, ptosis, and weakness of pharyngeal, facial, neck, and limb muscles.

View Article and Find Full Text PDF