Publications by authors named "Sindhu K Madathil"

Polytrauma, with combined traumatic brain injury (TBI) and systemic damage are common among military and civilians. However, the pathophysiology of peripheral organs following polytrauma is poorly understood. Using a rat model of TBI combined with hypoxemia and hemorrhagic shock, we studied the status of peripheral redox systems, liver glycogen content, creatinine clearance, and systemic inflammation.

View Article and Find Full Text PDF

Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair.

View Article and Find Full Text PDF

Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) are essential for neuroplasticity and neuronal survival. Despite the importance of these endogenous factors in mediating posttraumatic recovery, little is known about their response after penetrating type traumatic brain injury. The objective of this study was to quantify the expression levels BDNF and IGF-1, two well-known neuroplasticity mediators, after penetrating ballistic-like brain injury (PBBI).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is associated with neuronal damage or neuronal death in the hippocampus, a region critical for cognitive function. Immature neurons within the hippocampal neurogenic niche are particularly susceptible to TBI. Therapeutic strategies that protect immature hippocampal neurons or enhance posttraumatic neurogenesis may be advantageous for promoting functional recovery after TBI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined.

View Article and Find Full Text PDF

Complex I deficiency culminating in oxidative stress is proposed as one of the upstream mechanisms of nigral neuronal death in Parkinson's disease. We investigated whether sodium salicylate, an active metabolite of aspirin, could afford protection against rotenone-induced oxidative stress, neuronal degeneration, and behavioral dysfunction in rats, because it has the potential to accept a molecule each of hydroxyl radical (•OH) at the third or fifth position of its benzyl ring. Rotenone caused dose-dependent increase in •OH in isolated mitochondria from the cerebral cortex and time- (24-48 h) and dose-dependent (0.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) results in abrupt, initial cell damage leading to delayed neuronal death. The calcium-activated proteases, calpains, are known to contribute to this secondary neurodegenerative cascade. Although the specific inhibitor of calpains, calpastatin, is present within neurons, normal levels of calpastatin are unable to fully prevent the damaging proteolytic activity of calpains after injury.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repair after TBI.

View Article and Find Full Text PDF

Granulin (GRN, or progranulin) is a protein involved in wound repair, inflammation, and neoplasia. GRN has also been directly implicated in frontotemporal dementia and may contribute to Alzheimer's disease pathogenesis. However, GRN regulation expression is poorly understood.

View Article and Find Full Text PDF

Although neurotrophic factors such as nerve growth factor, basic fibroblast growth factor, brain-derived neurotrophic factor, and neurotrophin 4/5 are elevated after traumatic brain injury (TBI), little is known about the endogenous response of insulin-like growth factor-1 (IGF-1). We evaluated IGF-1, IGF-1 receptor (IGF-1R), and total and phosphorylated Akt (p-Akt), a known downstream mediator of IGF-1 signaling, using ELISA, Western blotting, and immunohistochemistry at 1, 6, 24, 48, and 72 h following 0.5-mm controlled cortical impact brain injury in adult mice.

View Article and Find Full Text PDF