Publications by authors named "Sinck L"

Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression.

View Article and Find Full Text PDF

Background: HIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to activate PKR after a cellular stress.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging.

View Article and Find Full Text PDF

HIV-1 Vif (viral infectivity factor) is associated with the assembly complexes and packaged at low level into the viral particles, and is essential for viral replication in non-permissive cells. Viral particles produced in the absence of Vif exhibit structural defects and are defective in the early steps of reverse transcription. Here, we show that Vif is able to anneal primer tRNA(Lys3) to the viral RNA, to decrease pausing of reverse transcriptase during (-) strand strong-stop DNA synthesis, and to promote the first strand transfer.

View Article and Find Full Text PDF