Publications by authors named "Sinbad Sweeney"

Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles.

View Article and Find Full Text PDF

Uptake and translocation of short functionalized multi-walled carbon nanotubes (short-fMWCNTs) through the pulmonary respiratory epithelial barrier depend on physicochemical property and cell type. Two monoculture models, immortalized human alveolar epithelial type 1 (TT1) cells and primary human alveolar epithelial type 2 cells (AT2), which constitute the alveolar epithelial barrier, were employed to investigate the uptake and transport of 300 and 700 nm in length, poly(4-vinylpyridine)-functionalized, multi-walled carbon nanotubes (p(4VP)-MWCNTs) using quantitative imaging and spectroscopy techniques. The p(4VP)-MWCNT exhibited no toxicity on TT1 and AT2 cells, but significantly decreased barrier integrity (*p < 0.

View Article and Find Full Text PDF

Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known.

View Article and Find Full Text PDF

Purpose: Multiwalled carbon nanotubes (MWCNTs) are a potential human health hazard, primarily via inhalation. In the lung, alveolar macrophages (AMs) provide the first line of immune cellular defense against inhaled materials. We hypothesized that, 1 and 5 days after treating AMs with short (0.

View Article and Find Full Text PDF

Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from and rodent studies and human studies using cell lines (typically cancerous). There is little data using primary human lung cells.

View Article and Find Full Text PDF

There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials.

View Article and Find Full Text PDF

Silver nanowires (AgNWs) are being developed for use in optoelectronics. However before widespread usage, it is crucial to determine their potential effects on human health. It is accepted that Ag nanoparticles (AgNPs) exert toxic effects by releasing Ag(+) ions, but much less is known about whether Ag(+) reacts with compounds, or any downstream bioactive effects of transformed AgNPs.

View Article and Find Full Text PDF