Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects.
View Article and Find Full Text PDFAging is hypothesized to be associated with changes in tendon matrix composition which may lead to alteration of tendon material properties and hence propensity to injury. Altered gene expression may offer insights into disease pathophysiology and thus open new perspectives toward designing pathophysiology-driven therapeutics. Therefore, the current study aimed at identifying naturally occurring differences in tendon micro-morphology and gene expression of newborn, young and old horses.
View Article and Find Full Text PDFThe purpose of the current study was to establish an in vitro model for osteoarthritis (OA) by co-culture of osteochondral and synovial membrane explants. Osteochondral explants were cultured alone (control-1) or in co-culture with synovial membrane explants (control-2) in standard culture medium or with interleukin-1β (IL1β) and tumor necrosis factor (TNFα) added to the culture medium (OA-model-1 = osteochondral explant; OA-model-2 = osteochondroal-synovial explant). In addition, in OA-model groups a 2-mm partial-thickness defect was created in the centre of the cartilage explant.
View Article and Find Full Text PDFSheep are one of the most frequently used large animal models in stem cell research. However, minimal invasive or noninvasive sources of mesenchymal stem cells (MSCs) in sheep are scarce. In the light of the principles of the 3Rs (reduce, refine, replace), it would therefore be desirable to identify a minimally invasive or noninvasive ovine MSC source.
View Article and Find Full Text PDF