In this study, we investigated the effect of morphology on the gas-transport properties of a poly(ether--amide) (PEBA) multiblock copolymer. We annealed the copolymer samples and varied the annealing temperature to evaluate the influence of changes in the microstructure on the gas transport properties of PEBA. In addition, we used time-resolved attenuated total reflection Fourier transform infrared spectroscopy to evaluate the diffusion coefficient of CO in PEBA based on the Fickian model.
View Article and Find Full Text PDFThe interfacial region between nanoparticles and polymer matrix plays a critical role in influencing the mechanical behavior of polymer nanocomposites. In this work, a set of model systems based on poly(methyl methacrylate) (PMMA) matrix containing poly(alkyl glycidyl ether) brushes grafted on 50 nm metal-organic-framework (MOF) nanoparticles were synthesized and investigated. By systematically increasing the polymer brush length and graft density on the MOF nanoparticles, the fracture behavior of PMMA/MOF nanocomposite changes from forming only a few large crazes to generating massive crazing and to undergoing shear banding, which results in significant improvement in fracture toughness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
A novel semicrystalline poly(ether ketone) (PEK)-based proton exchange membrane (semi-SPEK-x) has been developed. Through a one-step sulfonation and hydrolysis, a poly(ether ketimine) precursor transforms into PEK and ion-conducting groups are introduced. With an ion-exchange capacity ranging from 1.
View Article and Find Full Text PDFWe have developed basic ionic liquid-based hybrid membranes with ionic liquid modified zeolitic imidazolate frameworks (ZIFs) as fillers, aiming to enhance the electrochemical and physical properties of the membrane.
View Article and Find Full Text PDF