Phys Chem Chem Phys
February 2017
Following previous studies on the O(P) + H(XΣ) collisions, we present the nonadiabatic quantum dynamics of the reactions OH(XΠ) + H' → OH'(XΠ) + H, exchange (e), → OH(XΣ) + H'(S), quenching (q), and → OH' (XΣ) + H(S), exchange-quenching (eq). The reactants and products correlate via the ground X[combining tilde]A'' and first excited ÃA' electronic states of OH, which are the degenerate components of linear Π species. Therefore, they are strongly perturbed by nonadiabatic Renner-Teller (RT) effects, opening the (q) and (eq) channels that are closed in the Born-Oppenheimer approximation.
View Article and Find Full Text PDFThe quantum dynamics of three CH(X(2)Π) + D((2)S) reactions is studied by means of the coupled-channel time-dependent real-wavepacket (WP) and flux methods at collision energy Ecol ≤ 0.6 eV and on three potential energy surfaces (PESs): the Born-Oppenheimer (BO) ground PES X̃(3)A″ and the excited ones ã(1)A' and b̃(1)A″, coupled by nonadiabatic (NA) Renner-Teller (RT) effects. This three-state model is suitable for obtaining initial-state-resolved observables, is based on a complete analysis of the correlation diagram of the lowest electronic states of the CHD intermediate and of their NA interactions, and neglects the smaller coupling effects due to the asymptotic electronic angular momenta that become important in state-to-state dynamics.
View Article and Find Full Text PDFWe present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al.
View Article and Find Full Text PDFWe present the conical-intersection quantum dynamics of the nonreactive quenching (NQ) OH(A(2)Σ(+)) + H'((2)S) → OH(X(2)Π) + H'((2)S), exchange (X) OH(A(2)Σ(+)) + H'((2)S) → OH'(A(2)Σ(+)) + H((2)S), exchange-quenching (XQ) OH(A(2)Σ(+)) + H'((2)S) → OH'(X(2)Π) + H((2)S), and reaction (R) OH(A(2)Σ(+)) + H'((2)S) → O((1)D) + H2(X(1)Σg (+)) collisions. We obtain initial-state-resolved reaction probabilities, cross sections, and rate constants by considering OH in the ground vibrational state and in the rotational levels j0 = 0, 1, 2, and 5. Coupled-channel real wavepackets (WPs) on the X̃(1)A(') and B̃(1)A(') coupled electronic states are propagated by using the Dobbyn and Knowles diabatic potential surfaces and coupling [A.
View Article and Find Full Text PDFA quantum dynamics study for the NH(a(1)Δ) + D((2)S) reactions using coupled channel time dependent real wavepacket formalism is presented. Moreover, the Renner-Teller (RT) interactions between two electronic states of NHD (X[combining tilde](2)A'' and Ã(2)A') have been taken into account by means of semiempirical RT matrix elements. The introduction of RT effects opens the possibility of studying not only the adiabatic reactions [depletion (d) to N((2)D) + HD(X(1)Σ(+)) and exchange (e) to ND(a(1)Δ) + H((2)S)] but also nonadiabatic ones [quenching (q) to NH(X(3)Σ(-)) + D((2)S) and exchange-quenching (eq) to ND(X(3)Σ(-)) + H((2)S)].
View Article and Find Full Text PDFWe present the Born-Oppenheimer, quantum dynamics of the reactions C((1)D)+HD and C((1)D)+n-D(2) on the uncoupled potential energy surfaces ã (1)A' and b (1)A", considering the Coriolis interactions and the nuclear-spin statistics. Using the real wavepacket method, we obtain initial-state-resolved probabilities, cross sections, isotopic branching ratios, and rate constants. Similarly to the C+n-H(2) reaction, the probabilities present many ã (1)A' or few b (1)A" sharp resonances, and the cross sections are very large at small collision energies and decrease at higher energies.
View Article and Find Full Text PDFWe present the Born-Oppenheimer dynamics of the depletion reaction NH(a(1)Delta)+H(')-->N((2)D)+H(2) and of the exchange one NH(a(1)Delta)+H(')-->NH(')(a(1)Delta)+H, using the real wavepacket and flux methods and an accurate NH(2)(A (2)A(1)) surface. We report coupled-channel reaction probabilities, cross sections, and rate constants, taking into account Coriolis couplings. Because the surface is barrierless and strongly bound, probabilities have small centrifugal thresholds and present sharp and large resonances, associated with long-lived collision complexes.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2006
We have studied a three-dimensional time-dependent quantum dynamics of He - O2 inelastic scattering by using a recently published ab initio potential energy surface. The state-to-state transition probabilities at zero total angular momentum have been calculated in the energy range of 0.12-0.
View Article and Find Full Text PDF