Purpose: To help radiologists examine the growing number of computed tomography (CT) scans, automatic anomaly detection is an ongoing focus of medical imaging research. Radiologists must analyze a CT scan by searching for any deviation from normal healthy anatomy. We propose an approach to detecting abnormalities in axial 2D CT slice images of the brain.
View Article and Find Full Text PDFIntroduction: The automatic segmentation of brain parenchyma and cerebrospinal fluid-filled spaces such as the ventricular system is the first step for quantitative and qualitative analysis of brain CT data. For clinical practice and especially for diagnostics, it is crucial that such a method is robust to anatomical variability and pathological changes such as (hemorrhagic or neoplastic) lesions and chronic defects. This study investigates the increase in overall robustness of a deep learning algorithm that is gained by adding hemorrhage training data to an otherwise normal training cohort.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
March 2023
Purpose: Computed tomography (CT) is widely used to identify anomalies in brain tissues because their localization is important for diagnosis and therapy planning. Due to the insufficient soft tissue contrast of CT, the division of the brain into anatomical meaningful regions is challenging and is commonly done with magnetic resonance imaging (MRI).
Methods: We propose a multi-atlas registration approach to propagate anatomical information from a standard MRI brain atlas to CT scans.