Anisotropic cellulose nanofiber (CNF) foams represent the state-of-the-art in renewable insulation. These foams consist of large (diameter >10 μm) uniaxially aligned macropores with mesoporous pore-walls and aligned CNF. The foams show anisotropic thermal conduction, where heat transports more efficiently in the axial direction (along the aligned CNF and macropores) than in the radial direction (perpendicular to the aligned CNF and macropores).
View Article and Find Full Text PDFMaterials synthesis via liquid-like mineral precursors has been studied since their discovery almost 25 years ago, because their properties offer several advantages, for example, the ability to infiltrate small pores, the production of non-equilibrium crystal morphologies or mimicking textures from biominerals, resulting in a vast range of possible applications. However, the potential of liquid-like precursors has never been fully tapped, and they have received limited attention in the materials chemistry community, largely due to the lack of efficient and scalable synthesis protocols. Herein, the "scalable controlled synthesis and utilization of liquid-like precursors for technological applications" (SCULPT) method is presented, allowing the isolation of the precursor phase on a gram scale, and its advantage in the synthesis of crystalline calcium carbonate materials and respective applications is demonstrated.
View Article and Find Full Text PDF