Purpose: Since the inaugural workshop "Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy." hosted by the NCI and sponsored by the Radiosurgery Society (RSS), growing collaborations and investigations have ensued among experts, practitioners, and researchers. The RSS GRID, Lattice, Microbeam & FLASH (GLMF) Working Groups were formed as a framework for these efforts and have focused on advancing the understanding of the biology, technical/physical parameters, trial design, and clinical practice of these new radiation therapy modalities.
View Article and Find Full Text PDFPurpose: To explore the feasibility of a novel intensity-modulated proton arc technique that uses a single-energy beam from the cyclotron. The beam energy is externally modulated at each gantry angle by a tertiary energy modulator (EM). We hypothesize that irradiating in an arc without requiring an energy change from the cyclotron will achieve a faster delivery (main advantage of our technique) while keeping clinically desirable dosimetric results.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
November 2024
Purpose: Proton beam therapy (PBT) plays an important role in the management of primary spine tumors. The purpose of this consensus statement was to summarize safe and optimal delivery of PBT for spinal tumors.
Methods And Materials: The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee consisting of radiation oncologists and medical physicists with specific expertise in spinal irradiation developed expert recommendations discussing treatment planning considerations and current approaches in the treatment of primary spinal tumors.
Background: Protoacoustic (PA) imaging has the potential to provide real-time 3D dose verification of proton therapy. However, PA images are susceptible to severe distortion due to limited angle acquisition. Our previous studies showed the potential of using deep learning to enhance PA images.
View Article and Find Full Text PDFPurpose: A higher minimum monitor unit (minMU) for pencil-beam scanning proton beams in intensity-modulated proton therapy is preferred for more efficient delivery. However, plan quality may be compromised when the minMU is too large. This study aimed to identify the optimal minMU (OminMU) to improve plan delivery efficiency while maintaining high plan quality.
View Article and Find Full Text PDF. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies..
View Article and Find Full Text PDFBackground: Investigations on radiation-induced lung injury (RILI) have predominantly focused on local effects, primarily those associated with radiation damage to lung parenchyma. However, recent studies from our group and others have revealed that radiation-induced damage to branching serial structures such as airways and vessels may also have a substantial impact on post-radiotherapy (RT) lung function. Furthermore, recent results from multiple functional lung avoidance RT trials, although promising, have demonstrated only modest toxicity reduction, likely because they were primarily focused on dose avoidance to lung parenchyma.
View Article and Find Full Text PDFPurpose: Breath-hold (BH) technique can mitigate target motion, minimize target margins, reduce normal tissue doses, and lower the effect of interplay effects with intensity-modulated proton therapy (IMPT). This study presents dosimetric comparisons between BH and nonbreath-hold (non-BH) IMPT plans and investigates the reproducibility of BH plans using frequent quality assurance (QA) computed tomography scans (CT).
Methods And Materials: Data from 77 consecutive patients with liver (n = 32), mediastinal/lung (n = 21), nonliver upper abdomen (n = 20), and malignancies in the gastroesophageal junction (n = 4), that were treated with a BH spirometry system (SDX) were evaluated.
Purpose: The highly heterogeneous dose delivery of spatially fractionated radiation therapy (SFRT) is a profound departure from standard radiation planning and reporting approaches. Early SFRT studies have shown excellent clinical outcomes. However, prospective multi-institutional clinical trials of SFRT are still lacking.
View Article and Find Full Text PDFBackground: The first clinical trials to assess the feasibility of FLASH radiotherapy in humans have started (FAST-01, FAST-02) and more trials are foreseen. To increase comparability between trials it is important to assure treatment quality and therefore establish a standard for machine quality assurance (QA). Currently, the AAPM TG-224 report is considered as the standard on machine QA for proton therapy, however, it was not intended to be used for ultra-high dose rate (UHDR) proton beams, which have gained interest due to the observation of the FLASH effect.
View Article and Find Full Text PDFBackground: Proton linear energy transfer (LET) is associated with the relative biological effectiveness of radiation on tissues. Monte Carlo (MC) simulations have been known to be the preferred method to calculate LET. Detectors have also been built to measure LET, but they need to be calibrated with MC simulations.
View Article and Find Full Text PDFBackground: Proton beam therapy (PBT) is a non-surgical treatment that spares adjacent tissues compared to photon radiation and useful for Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). We present a single center experience in HCC and iCCA treated with Pencil Beam Scanning (PBS) PBT.
Methods: Forty-four consecutive patients (22 patients in each group) receiving PBT were included and reviewed.
Purpose: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs).
View Article and Find Full Text PDFPurpose: To assess treatment planning system (TPS) accuracy in estimating the stopping-power ratio (SPR) of immobilization devices commonly used in proton therapy and to evaluate the dosimetric effect of SPR estimation error for a set of clinical treatment plans.
Methods: Computed tomography scans of selected clinical immobilization devices were acquired. Then, the water-equivalent thickness (WET) and SPR values of these devices based on the scans were estimated in a commercial TPS.
Purpose: To investigate whether volumetric-modulated proton arc therapy (VPAT) plans generate comparable doses to organs at risk (OARs) compared with interstitial high-dose-rate (iHDR) brachytherapy for patients with gynecologic cancer with disease extension to parametrial/pelvic side wall, who are not eligible for the aggressive procedure.
Materials And Methods: VPAT delivers proton arc beams by modulated energies at the beam nozzle while maintaining the same incident energy to the gantry during the arc rotation. Plans of 10 patients previously treated with iHDR brachytherapy for high-risk clinical treatment volumes (HRCTV; 31.
Purpose: Well-designed routine multileaf collimator (MLC) quality assurance (QA) is important to assure external-beam radiation treatment delivery accuracy. This study evaluates the clinical necessity of a comprehensive weekly (C-Weekly) MLC QA program compared to the American Association of Physics in Medicinerecommended weekly picket fence test (PF-Weekly), based on our seven-year experience with weekly MLC QA.
Methods: The C-Weekly MLC QA program used in this study includes 5 tests to analyze: (1) absolute MLC leaf position; (2) interdigitation MLC leaf position; (3) picket fence MLC leaf positions at static gantry angle; (4) minimum leaf-gap setting; and (5) volumetric-modulated arc therapy delivery.
Purpose: Although flash radiation therapy (FLASH-RT) is a promising novel technique that has the potential to achieve a better therapeutic ratio between tumor control and normal tissue complications, the ultrahigh pulsed dose rates (UHPDR) mean that experimental dosimetry is very challenging. There is a need for real-time dosimeters in the development and implementation of FLASH-RT. In this work, we characterize a novel plastic scintillator capable of temporal resolution short enough (2.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2022
Purpose: Functional lung avoidance (FLA) radiation therapy (RT) aims to minimize post-RT pulmonary toxicity by preferentially avoiding dose to high-functioning lung (HFL) regions. A common limitation is that FLA approaches do not consider the conducting architecture for gas exchange. We previously proposed the functionally weighted airway sparing (FWAS) method to spare airways connected to HFL regions, showing that it is possible to substantially reduce risk of radiation-induced airway injury.
View Article and Find Full Text PDFPurpose: Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control.
View Article and Find Full Text PDFPurpose: Due to their finite range, electrons are typically ignored when calculating shielding requirements in megavoltage energy linear accelerator vaults. However, the assumption that 16 MeV electrons need not be considered does not hold when operated at FLASH-RT dose rates (~200× clinical dose rate), where dose rate from bremsstrahlung photons is an order of magnitude higher than that from an 18 MV beam for which shielding was designed. We investigate the shielding and radiation protection impact of converting a Varian 21EX linac to FLASH-RT dose rates.
View Article and Find Full Text PDFBackground: Following mastectomy, immediate breast reconstruction often involves the use of temporary tissue expanders (TEs). TEs contain metallic ports (MPs), which complicate proton pencil-beam scanning (PBS) planning. A technique was implemented for delivering PBS post-mastectomy radiation (PMRT) to patients with TEs and MPs.
View Article and Find Full Text PDFPurpose/objective(s): With reports of CNS toxicity in patients treated with proton therapy at doses lower than would be expected based on photon data, it has been proposed that heavy monitor unit (MU) weighting of pencil beam scanning (PBS) proton therapy spots may potentially increase the risk of toxicity. We evaluated the impact of maximum MU weighting per spot (maxMU/spot) restrictions on PBS plan quality, prior to implementing clinic-wide maxMU/spot restrictions.
Materials/methods: PBS plans of 11 patients, of which 3 plans included boosts, for a total of 14 PBS sample cases were included.
Purpose: To investigate and quantify the potential benefits associated with the use of stopping-power-ratio (SPR) images created from dual-energy computed tomography (DECT) images for proton dose calculation in a clinical proton treatment planning system (TPS).
Materials And Methods: The DECT and single-energy computed tomography (SECT) scans obtained for 26 plastic tissue surrogate plugs were placed individually in a tissue-equivalent plastic phantom. Relative-electron density (ρ) and effective atomic number ( ) images were reconstructed from the DECT scans and used to create an SPR image set for each plug.
Purpose: The purpose of this study was to quantify the variability of stoichiometric calibration curves for different computed tomography (CT) scanners and determine whether an averaged Hounsfield unit (HU)-to-stopping power ratio (SPR) calibration curve can be used across multiple CT scanners.
Materials And Methods: Five CT scanners were used to scan an electron density phantom to establish HU values of known material plugs. A stoichiometric calibration curve was calculated for CT scanners and for the average curve.