Short coherence times present a primary obstacle in quantum computing and sensing applications. In atomic systems, clock transitions (CTs), formed from avoided crossings in an applied Zeeman field, can substantially increase coherence times. We show how CTs can dampen intrinsic and extrinsic sources of quantum noise in molecules.
View Article and Find Full Text PDFPhotocathodes emit electrons when illuminated, a process utilized across many technologies. Cutting-edge applications require a set of operating conditions that are not met with current photocathode materials. Meanwhile, halide perovskites have been studied extensively and have shown a lot of promise for a wide variety of optoelectronic applications.
View Article and Find Full Text PDFElectron sources are a critical component in a wide range of applications such as electron-beam accelerator facilities, photomultipliers, and image intensifiers for night vision. We report efficient, regenerative and low-cost electron sources based on solution-processed halide perovskites thin films when they are excited with light with energy equal to or above their bandgap. We measure a quantum efficiency up to 2.
View Article and Find Full Text PDF