Beilstein J Nanotechnol
January 2021
The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis methods.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2020
Polymeric nanoparticles have drawn recent attention for their ability to enhance the efficacy of therapeutic proteins through reduced immunogenicity and extended circulation time. Though effective, most nanoparticle drug delivery systems are currently produced in batch processes that are limited in control parameters and scalability. To address these deficiencies, a millifluidic process was developed to encapsulate bovine serum albumin in poly(L-lysine)-grafted-poly(ethylene glycol) through an electrostatic self-assembly mechanism.
View Article and Find Full Text PDF