Background: Non-alcoholic fatty liver (NAFL) can progress to the severe subtype non-alcoholic steatohepatitis (NASH) and/or fibrosis, which are associated with increased morbidity, mortality, and healthcare costs. Current machine learning studies detect NASH; however, this study is unique in predicting the progression of NAFL patients to NASH or fibrosis.
Aim: To utilize clinical information from NAFL-diagnosed patients to predict the likelihood of progression to NASH or fibrosis.
Background: Acute heart failure (AHF) is associated with significant morbidity and mortality. Effective patient risk stratification is essential to guiding hospitalization decisions and the clinical management of AHF. Clinical decision support systems can be used to improve predictions of mortality made in emergency care settings for the purpose of AHF risk stratification.
View Article and Find Full Text PDF