Publications by authors named "Sina E Dominiak"

The use of head fixation has become routine in systems neuroscience. However, whether the behavior changes with head fixation, whether animals can learn aspects of a task while freely moving and transfer this knowledge to the head fixed condition, has not been examined in much detail. Here, we used a novel floating platform, the "Air-Track", which simulates free movement in a real-world environment to address the effect of head fixation and developed methods to accelerate training of behavioral tasks for head fixed mice.

View Article and Find Full Text PDF

Navigation through complex environments requires motor planning, motor preparation, and the coordination between multiple sensory-motor modalities. For example, the stepping motion when we walk is coordinated with motion of the torso, arms, head, and eyes. In rodents, movement of the animal through the environment is coordinated with whisking.

View Article and Find Full Text PDF

Sensory processing in the cortex adapts to the history of stimulation but the mechanisms are not understood. Imaging the primary visual cortex of mice we find here that an increase in stimulus contrast is not followed by a simple decrease in gain of pyramidal cells; as many cells increase gain to improve detection of a subsequent decrease in contrast. Depressing and sensitizing forms of adaptation also occur in different types of interneurons (PV, SST and VIP) and the net effect within individual pyramidal cells reflects the balance of PV inputs, driving depression, and a subset of SST interneurons driving sensitization.

View Article and Find Full Text PDF

A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state.

View Article and Find Full Text PDF

The advent of optogenetic methods has made it possible to use endogeneously produced molecules to image and manipulate cellular, subcellular, and synaptic activity. It has also led to the development of photoactivatable calcium-dependent indicators that mark active synapses, neurons, and circuits. Furthermore, calcium-dependent photoactivation can be used to trigger gene expression in active neurons.

View Article and Find Full Text PDF