IEEE Trans Ultrason Ferroelectr Freq Control
March 2016
Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2014
An analytical solution for piezoelectrically actuated spherically shaped diaphragms has been developed to study their dynamic behavior with targeted applications in piezoelectric micromachined ultrasonic transducers (pMUT). The analytical model starts with a curved pMUT composed of a piezoelectric diaphragm with a nominal radius in size, a radius of curvature in shape, and under both possible actuation sources of radial pressure and electric potential. The diaphragm has the piezoelectric material polarized in the direction perpendicular to its surface and sandwiched between two metal electrodes.
View Article and Find Full Text PDF