Introduction: Huntington's disease (HD) is a hereditary neurodegenerative disorder that primarily affects the striatum, a brain region responsible for movement control. The disease is characterized by the mutant huntingtin (mHtt) proteins with an extended polyQ stretch, which are prone to aggregation. These mHtt aggregates accumulate in neurons and are the primary cause of the neuropathology associated with HD.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
May 2024
Background And Objectives: Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease.
View Article and Find Full Text PDFThe bacterial nucleoid, a bacterial genome packed by nucleoid binding proteins, forms the physical basis for cellular processes such as gene transcription and DNA replication. Bacteria need to dynamically modulate their nucleoid structures at different growth phases and in response to environmental changes. At the nutrients deficient stationary phase, DNA-binding proteins from starved cells (Dps) and Integration host factors (IHF) are the two most abundant nucleoid associated proteins in E.
View Article and Find Full Text PDFDan is a transcription factor that regulates the ttd operon encoding tartrate dehydratase. During anaerobic conditions, its copy number increases by 100-fold, making Dan an abundant nucleoid-associated protein. However, little is known about the mode of Dan-DNA interaction.
View Article and Find Full Text PDFH-NS is an abundant nucleoid-associated protein in bacteria that globally silences genes, including horizontally-acquired genes related to pathogenesis. Although it has been shown that H-NS has multiple modes of DNA-binding, which mode is employed in gene silencing is still unclear. Here, we report that in H-NS mutants that are unable to silence genes, are unable to form a rigid H-NS nucleoprotein filament.
View Article and Find Full Text PDF