Publications by authors named "Sin-Ichi Odagaki"

Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM fraction of the neuronal cell membrane. Previous studies showed tight binding activity of NAP-22 to acidic membrane lipids and the self-interaction of NAP-22, i.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a pull-down assay to identify binding proteins, finding that NAP-22 interacts with glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67.
  • * The study suggests that NAP-22 may help transport GAD enzymes to synaptic regions and keep them anchored to synaptic vesicles, without affecting their enzymatic activity.
View Article and Find Full Text PDF

Endocytosis of the synaptic vesicle is a complicated process, in which many proteins and lipids participate. Phosphatidylinositol 4,5-bisphosphate (PIP(2) ) plays important roles in the process, and the dynamic regulation of this lipid is one of the key events. Synaptojanin is a PIP(2) phosphatase, and dephosphorylation of PIP(2) of the clathrin coated-vesicle results in the uncoating of the vesicle.

View Article and Find Full Text PDF

NAP-22 is a neuronal protein localized in the presynaptic membrane and synaptic vesicles and recovered in a Triton-insoluble low-density microdomain fraction after biochemical fractionation of the synaptic plasma membrane. NAP-22 organizes membrane microdomains through binding to membrane lipids such as cholesterol, phosphatidylethanolamine, and phosphatidylinositol 4,5-bisphosphate. In this study, NAP-22-binding proteins were screened through the pull-down assay using brain-derived NAP-22 bound to Sepharose 4B.

View Article and Find Full Text PDF