Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior.
View Article and Find Full Text PDFThe complexity and diversity of pain signaling have led to obstacles for prominent treatments due to mechanisms that are not yet fully understood. Among adenosine triphosphate (ATP) receptors, P2×7 differs in many respects from P2×1-6, it plays a significant role in various inflammatory pain, but whether it plays a role in noninflammatory pain has not been widely discussed. In this study, we utilized major neuropharmacological methods to record the effects of manipulating P2×7 during nociceptive signal transmission in the thalamocingulate circuits.
View Article and Find Full Text PDFThe biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin () and demonstrate its involvement in learning and adult neurogenesis.
View Article and Find Full Text PDFTau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration.
View Article and Find Full Text PDFNerve growth factor (NGF) gene therapy has been used in clinical trials of Alzheimer's disease. Understanding the underlying mechanisms of how NGF influences memory may help develop new strategies for treatment. Both NGF and the cholinergic system play important roles in learning and memory.
View Article and Find Full Text PDFStereotypic and/or repetitive behavior is one of the major symptoms of autism spectrum disorder (ASD). Increase of self-grooming behavior is a behavioral phenotype commonly observed in the mouse models for ASD. Previously, we have shown that knockout of acid-sensing ion channel 3 (ASIC3) led to the increased self-grooming behavior in resident-intruder test.
View Article and Find Full Text PDFBackground: Mutations in PKD1 or PKD2 gene lead to autosomal dominant polycystic kidney disease (ADPKD). The mechanism of ADPKD progression and its link to increased cardiovascular mortality is still elusive.
Methods: We differentiated ADPKD patient induced pluripotent stem cells (iPSCs) to cardiomyocytes (CMs).
Chronic pain can be initiated by one or more acute stimulations to sensitize neurons into the primed state. In the primed state, the basal nociceptive thresholds of the animal are normal, but, in response to another hyperalgesic stimulus, the animal develops enhanced and prolonged hyperalgesia. The exact mechanism of how primed state is formed is not completely understood.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and synaptic dysfunction. Adenosine is an important homeostatic modulator that controls the bioenergetic network in the brain through regulating receptor-evoked signaling pathways, bioenergetic machineries, and epigenetic-mediated gene regulation. Equilibrative nucleoside transporter 1 (ENT1) is a major adenosine transporter that recycles adenosine from the extracellular space.
View Article and Find Full Text PDFGalectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is caused by an expansion of CTG repeats in the 3' untranslated region (UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Cognitive impairment associated with structural change in the brain is prevalent in DM1. How this histopathological abnormality during disease progression develops remains elusive.
View Article and Find Full Text PDFAmyloid-β (Aβ) produces neurotoxicity in the brain and causes neuronal death, but the endogenous defense mechanism that is activated on Aβ insult is less well known. Here we found that acute Aβ increases the expression of PIAS1 and Mcl-1 via activation of MAPK/ERK, and Aβ induction of PIAS1 enhances HDAC1 SUMOylation in rat hippocampus. Knockdown of PIAS1 decreases endogenous HDAC1 SUMOylation and blocks Aβ induction of Mcl-1.
View Article and Find Full Text PDFCortico-basal ganglia circuits are critical for speech and language and are implicated in autism spectrum disorder, in which language function can be severely affected. We demonstrate that in the mouse striatum, the gene Foxp2 negatively interacts with the synapse suppressor gene Mef2c. We present causal evidence that Mef2c inhibition by Foxp2 in neonatal mouse striatum controls synaptogenesis of corticostriatal inputs and vocalization in neonates.
View Article and Find Full Text PDFPeroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium.
View Article and Find Full Text PDFInnate immune responses have been shown to influence brain development and function. Dysregulation of innate immunity is significantly associated with psychiatric disorders such as autism spectrum disorders and schizophrenia, which are well-known neurodevelopmental disorders. Recent studies have revealed that critical players of the innate immune response are expressed in neuronal tissues and regulate neuronal function and activity.
View Article and Find Full Text PDFHippocampal neurons play a critical role in learning and memory; however, the effects of environmental mechanical forces on neurite extension and associated underlying mechanisms are largely unexplored, possibly due to difficulties in maintaining central nervous system neurons. Neuron adhesion, neurite length, and mechanotransduction are mainly influenced by the extracellular matrix (ECM), which is often associated with structural scaffolding. In this study, we investigated the relationship between substrate stiffness and hippocampal neurite outgrowth by controlling the ratios of polydimethylsiloxane (PDMS) base to curing agent to create substrates of varying stiffness.
View Article and Find Full Text PDFImpairment of learning and memory is a significant pathological feature of many neurodegenerative diseases including FTLD-TDP. Appropriate regulation and fine tuning of spinogenesis of the dendrites, which is an integral part of the learning/memory program of the mammalian brain, are essential for the normal function of the hippocampal neurons. TDP-43 is a nucleic acid-binding protein implicated in multi-cellular functions and in the pathogenesis of a range of neurodegenerative diseases including FTLD-TDP and ALS.
View Article and Find Full Text PDFChronic pain is characterized by post-injury pain hypersensitivity. Current evidence suggests that it might result from altered neuronal excitability and/or synaptic functions in pain-related pathways and brain areas, an effect known as central sensitization. Increased activity of extracellular signal-regulated kinase (ERK) has been well-demonstrated in the dorsal horn of the spinal cord in chronic pain animal models.
View Article and Find Full Text PDFNoradrenergic (NAergic) A7 neurons that project axonal terminals to the dorsal horn of the spinal cord to modulate nociceptive signaling are suggested to receive tonic inhibition from local GABAergic interneurons, which are under the regulation of descending analgesic pathways. In support of this argument, we presently report GABA(B) receptor (GABA(B)R)-mediated tonic inhibition of NAergic A7 neurons. Bath application of baclofen induced an outward current (I(Bac)) in NAergic A7 neurons that was blocked by CGP 54626, a GABA(B)R blocker.
View Article and Find Full Text PDFApplication of phorbol 12,13-diacetate (PDA) caused marked enhancement of synaptic transmission of nociceptive parabrachio-amygdaloid (PBA) input onto neurons of the capsular central amygdaloid (CeAC) nucleus. The potentiation of PBA-CeAC EPSCs by PDA involved a presynaptic protein kinase C (PKC)-dependent component and a postsynaptic PKC-extracellular-regulated kinase (ERK)-dependent component. NMDA glutamatergic receptor (NMDAR)-dependent long-term potentiation (LTP) of PBA-CeAC EPSCs, which was also dependent on the PKC-ERK signaling pathway, was induced by tetanus stimulation at 100 Hz.
View Article and Find Full Text PDFIn the mammalian brain, the hippocampus has been established as a principle structure for learning and memory processes, which involve synaptic plasticity. Although a relationship between synaptic plasticity and stimulation frequency has been reported in numerous studies, little is known about the importance of pulse number on synaptic plasticity. Here we investigated whether the pulse number can modulate bidirectional plasticity in hippocampal CA1 areas.
View Article and Find Full Text PDF