We investigated the stability of monolayer MoSsamples synthesized using chemical vapor deposition and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy, Raman spectroscopy, and surface quality using atomic force microscopy, we observed that this modification of monolayer MoSwith organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS.
View Article and Find Full Text PDFWe present a simple method for modification of 2D materials by drop-casting of the organic molecule in solution on the 2D material under ambient conditions. Specifically, we investigated the adsorption of 6-(4,5-Dihydro-1-imidazol-3-ium-2-yl)-2-(naphthalene-2-yl)benzothiazole methanesulfonate (L63MS) organic molecule on 2D MoS2. To better understand the effect of the organic molecule on the 2D material, we also investigated the impact of solvents alone on the materials' properties.
View Article and Find Full Text PDF