Publications by authors named "Sims P"

While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors.

View Article and Find Full Text PDF

Development of therapeutic approaches that target specific microglia responses in amyotrophic lateral sclerosis (ALS) is crucial due to the involvement of microglia in ALS progression. Our study identifies the predominant microglia subset in human ALS primary motor cortex and spinal cord as an undifferentiated phenotype with dysregulated respiratory electron transport. Moreover, we find that the interferon response microglia subset is enriched in donors with aggressive disease progression, while a previously described potentially protective microglia phenotype is depleted in ALS.

View Article and Find Full Text PDF
Article Synopsis
  • Memory T and B cells in tissues are crucial for immunity, with a study analyzing immune memory from mRNA COVID-19 vaccine in 63 organ donors of varying ages.* -
  • Spike-reactive memory T cells were found in lymphoid organs and lungs, showing differences in expression based on prior SARS-CoV-2 infection, while B cells in these areas were mainly class-switched memory cells.* -
  • Tissue memory T cells lasted longer than blood counterparts, especially in older individuals, with distinct roles: regulatory profiles were more common in tissues, helping protect while minimizing damage.*
View Article and Find Full Text PDF

Disease-associated microglia (DAM), initially described in mouse models of neurodegenerative diseases, have been classified into two related states; starting from a TREM2-independent DAM1 state to a TREM2 dependent state termed DAM2, with each state being characterized by the expression of specific marker genes. Recently, single-cell (sc)RNA-Seq studies have reported the existence of DAMs in humans; however, whether DAMs play beneficial or detrimental roles in the context of neurodegeneration is still under debate. Here, we present a pharmacological approach to mimic human DAM by exposing different human microglia models to selected histone deacetylase (HDAC) inhibitors.

View Article and Find Full Text PDF

Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood.

View Article and Find Full Text PDF

Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development.

View Article and Find Full Text PDF

Acinar cells have been proposed as a cell-of-origin for pancreatic ductal adenocarcinoma (PDAC) after undergoing acinar-to-ductal metaplasia (ADM). ADM can be triggered by pancreatitis, causing acinar cells to de-differentiate to a ductal-like state. We identify FRA1 (gene name Fosl1) as the most active transcription factor during Kras acute pancreatitis-mediated injury, and we have elucidated a functional role of FRA1 by generating an acinar-specific Fosl1 knockout mouse expressing Kras.

View Article and Find Full Text PDF

CITE-seq enables paired measurement of surface protein and mRNA expression in single cells using antibodies conjugated to oligonucleotide tags. Due to the high copy number of surface protein molecules, sequencing antibody-derived tags (ADTs) allows for robust protein detection, improving cell-type identification. However, variability in antibody staining leads to batch effects in the ADT expression, obscuring biological variation, reducing interpretability, and obstructing cross-study analyses.

View Article and Find Full Text PDF

Unlabelled: While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • * Demonstrates that Fgfbp1+ cells are multi-potent, can give rise to Lgr5+ cells, and can sustain regeneration even after Lgr5+ cells are depleted.
  • * Highlights the essential role of FGFBP1 in promoting crypt proliferation and maintaining epithelial homeostasis, suggesting a new model for intestinal tissue regeneration.
View Article and Find Full Text PDF

During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults.

View Article and Find Full Text PDF

Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target with roles in proliferation and invasion. Resistance to KIF11 inhibitors, which has mainly been studied in animal models, presents significant challenges. We use lineage-tracing barcodes and single-cell RNA sequencing to analyze resistance in patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor.

View Article and Find Full Text PDF

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes .

View Article and Find Full Text PDF

Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability.

View Article and Find Full Text PDF
Article Synopsis
  • The immune system is made up of various cell types that are found in blood and tissues, but research mostly focuses on blood samples, leaving gaps in our understanding of immune variation throughout the body and across different ages.
  • Researchers analyzed RNA and surface protein expression from over 1.25 million immune cells collected from various tissues of 24 organ donors aged 20-75 years to understand these variations better.
  • They discovered that immune cell composition and function varies significantly based on tissue type and age, providing insights into how immune responses can be linked to disease across the human lifespan.
View Article and Find Full Text PDF

Single-cell transcriptomic analyses now frequently involve elaborate study designs including samples from multiple individuals, experimental conditions, perturbations, and batches from complex tissues. Dimensionality reduction is required to facilitate integration, interpretation, and statistical analysis. However, these datasets often include subtly different cellular subpopulations or state transitions, which are poorly described by clustering.

View Article and Find Full Text PDF

Ulnar neuropathy commonly causes hand paresthesia, often associated with mechanical compression or repetitive movements across the elbow or wrist. There are a few cases that document ulnar nerve injury from rapid compression in the absence of trauma. We present a 30-year-old previously healthy male who developed bilateral hand and forearm swelling, numbness, and pain after an allergic reaction initially treated with epinephrine and steroids.

View Article and Find Full Text PDF

Objective: Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor, and resection is a key part of the standard of care. In fluorescence-guided surgery (FGS), fluorophores differentiate tumor tissue from surrounding normal brain. The heme synthesis pathway converts 5-aminolevulinic acid (5-ALA), a fluorogenic substrate used for FGS, to fluorescent protoporphyrin IX (PpIX).

View Article and Find Full Text PDF

Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal models. We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell RNA sequencing (scRNA-seq) helps us study cell diversity and gene expression, but it doesn’t always match up with surface protein profiles, especially in immune cells.
  • The new technique, CITE-seq, allows researchers to analyze both RNA transcripts and surface proteins at the same time, but requires a sophisticated classifier for accurate identification of cell types.
  • The MultiModal Classifier Hierarchy (MMoCHi) effectively combines gene and protein data for classifying immune cell types, outperforming existing methods and offering flexibility to analyze various biological samples and cell types.
View Article and Find Full Text PDF

Infants and young children are more susceptible to common respiratory pathogens than adults but can fare better against novel pathogens like severe acute respiratory syndrome coronavirus 2. The mechanisms by which infants and young children mount effective immune responses to respiratory pathogens are unknown. Through investigation of lungs and lung-associated lymph nodes from infant and pediatric organ donors aged 0-13 years, we show that bronchus-associated lymphoid tissue (BALT), containing B cell follicles, CD4 T cells and functionally active germinal centers, develop during infancy.

View Article and Find Full Text PDF