H-magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single-voxel MRS (point-resolved single-voxel spectroscopy sequence, 1.
View Article and Find Full Text PDFBackground: H-magnetic resonance spectroscopy (MRS) facilitates noninvasive diagnosis of pediatric brain tumors by providing metabolite profiles. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. We aimed to evaluate diagnostic accuracy of MRS for childhood brain tumors and determine added clinical value compared with conventional MRI.
View Article and Find Full Text PDFBrain tumours are the most common cause of cancer death in children. Molecular studies have greatly improved our understanding of these tumours but tumour metabolism is underexplored. Metabolites measured in vivo have been reported as prognostic biomarkers of these tumours but analysis of surgically resected tumour tissue allows a more extensive set of metabolites to be measured aiding biomarker discovery and providing validation of in vivo findings.
View Article and Find Full Text PDFPaediatric brain tumors are becoming well characterized due to large genomic and epigenomic studies. Metabolomics is a powerful analytical approach aiding in the characterization of tumors. This study shows that common cerebellar tumors have metabolite profiles sufficiently different to build accurate, robust diagnostic classifiers, and that the metabolite profiles can be used to assess differences in metabolism between the tumors.
View Article and Find Full Text PDFPaediatric brain tumours have a high mortality rate and are the most common solid tumour of childhood. Identification of high risk patients may allow for better treatment stratification. Magnetic Resonance Spectroscopy (MRS) provides a non-invasive measure of brain tumour metabolism and quantifies metabolite survival markers to aid in the clinical management of patients.
View Article and Find Full Text PDFBackground: Magnetic resonance spectroscopy (MRS) aids noninvasive diagnosis of pediatric brain tumors, but use in clinical practice is not well documented. We aimed to review clinical use of MRS, establish added value in noninvasive diagnosis, and investigate potential impact on patient care.
Methods: Sixty-nine children with lesions imaged using MRS and reviewed by the tumor board from 2014 to 2016 met inclusion criteria.
The rare pediatric embryonal tumors retinoblastoma, medulloblastoma and neuroblastoma derive from neuroectodermal tissue and share similar histopathological features despite different anatomical locations and diverse clinical outcomes. As metabolism can reflect genetic and histological features, we investigated whether the metabolism of embryonal tumors reflects their similar histology, shared developmental and neural origins, or tumor location. We undertook metabolic profiling on 50 retinoblastoma, 39 medulloblastoma and 70 neuroblastoma using high resolution magic angle spinning magnetic resonance spectroscopy (1H-MRS).
View Article and Find Full Text PDFImaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response.
View Article and Find Full Text PDFPurpose: Classification of pediatric brain tumors from H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tumor types.
View Article and Find Full Text PDFThe purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T).
View Article and Find Full Text PDFPurpose: Medulloblastoma is the most common malignant brain tumor occurring in childhood and is a significant cause of morbidity and mortality in pediatric oncology. More intense treatment strategies are recommended for patients displaying high-risk factors; however, considerable variation in outcome remains, indicating a need for improved predictive markers. In this study, 1H magnetic resonance spectroscopy (MRS) was used to investigate noninvasive molecular biomarkers of survival in medulloblastoma.
View Article and Find Full Text PDFBackground: Malignant brain tumors in children generally have a very poor prognosis when they relapse and improvements are required in their management. It can be difficult to accurately diagnose abnormalities detected during tumor surveillance, and new techniques are required to aid this process. This study investigates how metabolite profiles measured noninvasively by (1)H magnetic resonance spectroscopy (MRS) at relapse reflect those at diagnosis and may be used in this monitoring process.
View Article and Find Full Text PDF