Publications by authors named "Simran Kaur Rainu"

We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition that encompasses a wide range of liver diseases that progresses from simple hepatic steatosis to the life-threatening state of cirrhosis. However, due to the heterogeneity of this disease, comprehensive analysis of several physicochemical and biological factors that drive its progression is necessary. Therefore, an platform is required that would enable real-time monitoring of these changes to better understand the progression of these diseases.

View Article and Find Full Text PDF

A tumor microenvironment often presents altered physicochemical characteristics of the extracellular matrix (ECM) including changes in matrix composition, stiffness, protein expression, pH, temperature, or the presence of certain stromal and immune cells. Of these, overexpression of matrix metalloproteinases (MMPs) and extracellular acidosis are the two major hallmarks of cancer that can be exploited for tumor detection. The change in matrix stiffness and the release of certain cytokines (TNF-α) in the tumor microenvironment play major roles in inducing MMP-9 expression in cancerous cells.

View Article and Find Full Text PDF

This work experimentally demonstrates the operation of a miniaturized magnetoelectric (ME) wireless power transfer (WPT) system by incorporating a ME transducer and a suitable interface power management circuit (PMC) for potentially powering implantable medical devices (IMD) wirelessly. A ME heterostructure is micromachined to obtain desired device dimensions of 3.5 × 5 mm and to restrict the operating frequency at a clinically approved frequency of 50 kHz.

View Article and Find Full Text PDF

Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors.

View Article and Find Full Text PDF