Publications by authors named "Simos Malamis"

This work investigated the stability of the Upflow Anaerobic Sludge Blanket (UASB) reactor under psychrophilic temperatures with varying feed streams, simulating typical and concentrated sewage. In Phase I, treating municipal wastewater, chemical oxygen demand (COD) removal dropped from 77 ± 6 % to 41 ± 2 % as hydraulic retention time decreased from 24 to 12 h and organic loading rate (OLR) increased from 0.6 to 1.

View Article and Find Full Text PDF

The combination of treatment wetlands (TWs) with microbial electrochemical technologies (MET) is often studied in the lab to improve the performance and decrease the footprint of TWs. In this article we evaluated the long-term performance of four pilot-scale vertical sub-surface flow TWs for major pollutants' and organic micropollutants' removal from domestic wastewater. Three of them were filled with electroconductive material and operated under saturated (MET SAT), unsaturated (MET UNSAT) and unsaturated-saturated (MET HYBRID) conditions while the fourth one was a saturated intensified aerated system (AEW) filled with gravel.

View Article and Find Full Text PDF

The scarcity of freshwater poses significant challenges to agriculture, often necessitating the use of alternative water sources such as reclaimed water. While reclaimed water offers a viable solution by providing water and nutrients to crops, its potential impacts on soil microbial communities remain a subject of investigation. In this investigation, we conducted a field experiment cultivating Maize (Zea mays) and Lavender (Lavandula angustifolia), employing irrigation with reclaimed water originating from domestic wastewater, while control samples were irrigated using freshwater.

View Article and Find Full Text PDF

The current work investigated the performance of an Integrated Fixed-Film Activated Sludge Sequencing Batch Reactor (IFAS-SBR) for Biological Nitrogen Removal (BNR) from mature landfill leachate through the nitritation-denitritation process. During the experimental period two IFAS-SBR configurations were examined using two different biocarrier types with the same filling ratio (50%). The dissolved oxygen (DO) concentration ranged between 2 and 3 mg/L and 4-6 mg/L in the first (baseline-IFAS) and the second (S8-IFAS) setup, respectively.

View Article and Find Full Text PDF

The presence of micropollutants in water bodies has become a growing concern due to their persistence, bioaccumulation and potential toxicological effects on aquatic life and humans. In this study, the performance of a column system consisting of zero-valent iron nanoparticles (nZVI) incorporated into a cationic resin and synthesized from green tea extract with the addition of persulfate for the elimination of selected pharmaceuticals and endocrine disruptors from wastewater is evaluated. Ibuprofen, naproxen, diclofenac and ketoprofen were the target pharmaceuticals from non-steroidal anti-inflammatory drugs group, while bisphenol A was the target endocrine disruptor.

View Article and Find Full Text PDF

One of the most recent innovations to promote a circular economy during wastewater treatment is the production of biopolymers. It has recently been demonstrated that it is possible to integrate the production of biopolymers in the form of polyhydroxyalkanoates (PHA) with nitrogen removal via nitrite during the treatment of sludge reject water. In the present study, simulation of a new process for bioresource recovery was conducted by an appropriate modification of the Activated Sludge Model 3.

View Article and Find Full Text PDF

Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology.

View Article and Find Full Text PDF

The purpose of this study is to investigate the effect of Free Nitrous Acid (FNA) and Free Ammonia (FA) on enhanced biological phosphorus removal (EBPR) and in particular on the aerobic phosphorus uptake rate (PUR). To this end, a PAO-enriched biomass was developed at a lab-scale reactor in order to fuel a series of ex-situ batch experiments to test the effect of various nitrite or ammonium concentrations on the phosphorus uptake rate at different pH values. FNA was found to be a strong inhibitor of EBPR, in agreement with other studies with PUR being inhibited by 50 % under 1.

View Article and Find Full Text PDF

Significant growth of the human population is expected in the future. Hence, the pressure on the already scarce natural water resources is continuously increasing. This work is an overview of membrane and filtration methods for the removal of pollutants such as bacteria, viruses and heavy metals from surface water.

View Article and Find Full Text PDF

A modified anaerobic baffled reactor (ABR) combined with a submerged membrane bioreactor (MBR) was applied to treat municipal wastewater. The performance of this process was examined in terms of the removal of organic matter, suspended solids, turbidity and nitrogen. The raw wastewater was fed to the 105 L ABR and then the treated effluent was driven to a 58 L MBR equipped with a submerged hollow fibre ultrafiltration membrane module.

View Article and Find Full Text PDF

Nitrous oxide (NO) is an important pollutant which is emitted during the biological nutrient removal (BNR) processes of wastewater treatment. Since it has a greenhouse effect which is 265 times higher than carbon dioxide, even relatively small amounts can result in a significant carbon footprint. Biological nitrogen (N) removal conventionally occurs with nitrification/denitrification, yet also through advanced processes such as nitritation/denitritation and completely autotrophic N-removal.

View Article and Find Full Text PDF

This study assesses from an environmental perspective two different configurations for the combined treatment of wastewater and domestic organic waste (DOW) in a small and decentralised community having a population of 2000. The applied schemes consist of an upflow anaerobic blanket (UASB) as core treatment process. Scheme A integrates membranes with the anaerobic treatment; while in Scheme B biological removal of nutrients in a sequencing batch reactor (SBR) is applied as a post treatment to UASB effluent.

View Article and Find Full Text PDF

A technical and environmental evaluation of an innovative scheme for the co-treatment of domestic wastewater and domestic organic waste (DOW) was undertaken by coupling an upflow anaerobic sludge blanket (UASB), a sequencing batch reactor (SBR) and a fermentation reactor. Alternative treatment configurations were evaluated with different waste collection practices as well as various schemes for nitrogen and phosphorus removal. All treatment systems fulfilled the required quality of the treated effluent in terms of chemical oxygen demand (COD) and total suspended solids (TSS) concentrations.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite.

View Article and Find Full Text PDF

This work evaluated the use of different external carbon sources to promote the via-nitrite nutrient removal from anaerobic effluents. The carbon sources consisted of fermentation liquid produced from the organic fraction of municipal solid waste (OFMSW FL), drainage liquid produced from OFMSW, fermentation liquid produced from vegetable and fruit waste (VFW FL) and acetic acid. Denitritation and phosphorus uptake via nitrite were evaluated in two sequencing batch reactors, one treating the anaerobic supernatant produced from the co-digestion of OFMSW and activated sludge (highly nitrogenous anaerobic effluent - HNAE), and the other one treating the weakly nitrogenous anaerobic effluent (WNAE) from an upflow anaerobic sludge blanket reactor.

View Article and Find Full Text PDF

The inhibitory effect of two veterinary pharmaceuticals was studied for different types of biomass involved in via nitrite nitrogen removal processes. Batch tests were conducted to determine the inhibition level of acetaminophen (PAR) and doxycycline (DOX) on the activity of short-cut nitrifying, denitrifying and anoxic ammonium oxidation (anammox) biomass and phosphorus accumulating organisms (PAOs). All biomass types were affected by PAR and DOX, with anammox being the most sensitive bacteria.

View Article and Find Full Text PDF

This study examined the inhibitory effects of lead, copper, nickel and zinc on heterotrophic biomass and their potential mitigation through the use of low-cost, natural minerals. Activated sludge was placed in batch reactors and specific heavy metal concentrations were added. Subsequently, the biomass specific oxygen uptake rate (sOUR) was determined to assess the level of biomass inhibition.

View Article and Find Full Text PDF

This work investigated the removal of metals from wastewater using a combined Membrane Bioreactor-Reverse Osmosis (MBR-RO) system. The concentrate produced by the RO system was treated by a fixed bed column packed with zeolite. The average metal removal accomplished by the MBR treating municipal wastewater was Cu(90%), Fe(85%), Mn(82%), Cr(80%), Zn(75%), Pb(73%), Ni(67%), Mg(61%), Ca(57%), Na(30%) and K(21%), with trivalent and divalent metals being more effectively removed than monovalent ones.

View Article and Find Full Text PDF

The aim of this work was to evaluate the long-term performance of a Membrane Bioreactor (MBR) that operated continuously for 2.5 years and to assess membrane fouling and biomass activity under various operating conditions. Furthermore, a method for the characterisation of influent wastewater was developed based on its separation into various fractions.

View Article and Find Full Text PDF

This work investigated the use of ultrafiltration (UF) or microfiltration (MF) membranes combined with natural minerals for the pre-treatment of wastewater containing high amounts of lead. The effects of initial lead concentration, solution pH, membrane pore size, mineral type and concentration and mineral - metal contact time were investigated. Lead removal accomplished by the UF system was higher in wastewater compared to that obtained in aqueous solutions and this was attributed to the formation of insoluble metal precipitates/complexes, which were effectively retained by the membranes.

View Article and Find Full Text PDF

The aim of this work was to investigate the potential regeneration of natural zeolite which had been contaminated with lead and zinc contained in aqueous solutions, treated secondary effluent and primary treated wastewater. Several desorbing solutions were examined for the removal of Pb(II) and Zn(II) from zeolite and the highest desorption efficiency was obtained for 3M KCl and 1M KCl, respectively. The desorption process depended on the type and concentration of the desorbing solution, the metal being desorbed, the mineral selectivity towards the metal and the composition of the liquid medium where the adsorption process had taken place.

View Article and Find Full Text PDF

In this work the performance of a Membrane bioreactor (MBR) was assessed for the removal of 3-15 mg/l of copper, lead, nickel and zinc from wastewater. The average removal efficiencies accomplished by the MBR system were 80% for Cu(II), 98% for Pb(II), 50% for Ni(II) and 77% for Zn(II). The addition of 5 g/l vermiculite into the biological reactor enhanced metal removal to 88% for copper, 85% for zinc and 60% for nickel due to adsorption of metal ions on the mineral, while it reduced biomass inhibition and increased biomass growth.

View Article and Find Full Text PDF

This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH=6 the metal removal sequence obtained by the UF system was Pb(II)>Cu(II)>Zn(II)>Ni(II) in mg g⁻¹ with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds.

View Article and Find Full Text PDF