Eosin Y is one of the most popular organic dyes used as a photoredox catalyst and is largely employed in photochemical reactions both as a homogeneous and heterogeneous photocatalyst after immobilization. Immobilization of Eosin Y onto a solid support has many advantages, such as the possibility of recovery and reuse of the photocatalyst and the possibility of its use under flow conditions. In this paper, we report our findings on the immobilization of Eosin Y onto Merrifield resin and its application in the direct photochemical arylation of furan with aryldiazonium salts.
View Article and Find Full Text PDFBiaryl scaffolds are widely spread in biologically important natural products, in numerous therapeutic agents, but they are also considered a privileged class of ligands and (organo)catalysts; therefore, the development of efficient alternative methodologies to prepare such compounds is always attracting much attention. The present review discusses the organic electrosynthesis of biaryls starting from phenols, anilines, naphthols, and naphthylamines. The most significant examples of the works reported in the last decade are presented and classified according to the single class of molecules: after the introduction, the first three sections relate to the reactions of phenols, naphthols, and anilines, respectively; the other two sections refer to cross-coupling and miscellaneous reactions.
View Article and Find Full Text PDFA series of multi-target-directed ligands (MTDLs), obtained by attachment of a hydroxyphenylbenzimidazole (BIM) unit to donepezil (DNP) active mimetic moiety (benzyl-piperidine/-piperazine) was designed, synthesized, and evaluated as potential anti-Alzheimer's disease (AD) drugs in terms of biological activity (inhibition of acetylcholinesterase (AChE) and β-amyloid (Aβ) aggregation), metal chelation, and neuroprotection capacity. Among the DNP-BIM hybrids studied herein, the structural isomerization did not significantly improve the biological properties, while some substitutions, namely fluorine atom in each moiety or the methoxy group in the benzyl ring, evidenced higher cholinergic AChE activity. All the compounds are able to chelate Cu and Zn metal ions through their bidentate BIM moieties, but compound , containing a three-dentate chelating unit, is the strongest Cu(II) chelator.
View Article and Find Full Text PDF