Publications by authors named "Simone U Dalm"

Background: Fibroblast activation protein (FAP) is an attractive target for cancer theranostics. Although FAP-targeted nuclear imaging demonstrated promising clinical results, only sub-optimal results are reported for targeted radionuclide therapy (TRT). Preclinical research is crucial in selecting promising FAP-targeted radiopharmaceuticals and for obtaining an increased understanding of factors essential for FAP-TRT improvement.

View Article and Find Full Text PDF

Background: Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT).

View Article and Find Full Text PDF

Aims: The aim of our study was to determine the effect of histone deacetylase (HDAC) inhibitors (HDACis) on somatostatin type-2 receptor (SSTR2) expression and [In]In-/[Lu]Lu-DOTA-TATE uptake in vitro and in vivo.

Materials And Methods: The human cell lines NCI-H69 (small-cell lung carcinoma) and BON-1 (pancreatic neuroendocrine tumor) were treated with HDACis (i.e.

View Article and Find Full Text PDF

Introduction: Central to targeted radionuclide imaging and therapy of prostate cancer (PCa) are prostate-specific membrane antigen (PSMA)-targeting radiopharmaceuticals. Gastrin-releasing peptide receptor (GRPR) targeting has been proposed as a potential additional approach for PCa theranostics. The aim of this study was to investigate to what extent and at what stage of the disease GRPR-targeting applications can complement PSMA-targeting theranostics in the management of PCa.

View Article and Find Full Text PDF

Purpose: Radiolabeled NeoB is a promising gastrin-releasing peptide receptor (GRPR)-targeting radiopharmaceutical for theranostics of GRPR-expressing malignancies, e.g., prostate cancer (PCa).

View Article and Find Full Text PDF

Small-molecule drug conjugates (SMDCs) are compounds in which a therapeutic payload is conjugated to a targeting vector, for specific delivery to the tumor site. This promising approach can be translated to the treatment of prostate cancer by selecting a targeting vector which binds to the prostate-specific membrane antigen (PSMA). Moreover, the addition of a bifunctional chelator to the molecule allows for the use of both diagnostic and therapeutic radionuclides.

View Article and Find Full Text PDF

Background: Somatostatin receptor type 2 (SST) expression is critical for the diagnosis and treatment of neuroendocrine tumors and is associated with improved patient survival. Recent data suggest that epigenetic changes such as DNA methylation and histone modifications play an important role in regulating SST expression and tumorigenesis of NETs. However, there are limited data on the association between epigenetic marks and SST expression in small intestinal neuroendocrine tumors (SI-NETs).

View Article and Find Full Text PDF

Image-guided surgery using a gastrin-releasing peptide receptor (GRPR)-targeting dual-modality probe could improve the accuracy of the resection of various solid tumors. The aim of this study was to further characterize our four previously developed GRPR-targeting dual-modality probes that vary in linker structures and were labeled with indium-111 and sulfo-cyanine 5. Cell uptake studies with GRPR-positive PC-3 cells and GRPR-negative NCI-H69 cells confirmed receptor specificity.

View Article and Find Full Text PDF

Purpose: The radiolabeled gastrin-releasing peptide receptor (GRPR)-targeting antagonist NeoB is a promising radioligand for imaging and therapy of GRPR-expressing malignancies. In the current study, we aimed to discover the target organs of toxicity and the radiotoxic effects to these organs, when repeated dosages of [Lu]Lu-NeoB are administered to healthy female and male mice.

Methods: Animals received either 3 injections, with a 7-day interval, of vehicle (control group 1), 1200 pmol [Lu]Lu-NeoB (control group 2) or 40 MBq/400 pmol, 80 MBq/800 pmol, and 120 MBq/1200 pmol [Lu]Lu-NeoB (treatment groups 1, 2, and 3, respectively).

View Article and Find Full Text PDF

Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine-based interventions.

View Article and Find Full Text PDF

Nuclear and optical dual-modality probes can be of great assistance in prostate cancer localization, providing the means for both preoperative nuclear imaging and intraoperative surgical guidance. We developed a series of probes based on the backbone of the established GRPR-targeting radiotracer NeoB. The inverse electron demand of the Diels-Alder reaction was used to integrate the sulfo-cyanine 5 dye.

View Article and Find Full Text PDF

To improve peptide receptor radionuclide therapy (PRRT), we aimed to enhance the expression of somatostatin type-2 receptors (SSTR2) in vitro and in vivo, using valproic acid (VPA). Human NCI-H69 small-cell lung carcinoma cells were treated with VPA, followed by [In]In-DOTATATE uptake studies, RT-qPCR and immunohistochemistry analysis. Furthermore, NCI-H69 xenografted mice were treated with VPA or vehicle, followed by [Lu]Lu-DOTATATE injection.

View Article and Find Full Text PDF

The gastrin-releasing peptide receptor (GRPR) is expressed in high numbers in a variety of human tumors, including the frequently occurring prostate and breast cancers, and therefore provides the rationale for directing diagnostic or therapeutic radionuclides on cancer lesions after administration of anti-GRPR peptide analogs. This concept has been initially explored with analogs of the frog 14-peptide bombesin, suitably modified at the N-terminus with a number of radiometal chelates. Radiotracers that were selected for clinical testing revealed inherent problems associated with these GRPR agonists, related to low metabolic stability, unfavorable abdominal accumulation, and adverse effects.

View Article and Find Full Text PDF

The aim of this study was to increase somatostatin type-2 receptor (SSTR2) expression on neuroendocrine tumor (NET) cells using histone deacetylase inhibitors (HDACis), potentially increasing the uptake of SSTR2-targeted radiopharmaceuticals and subsequently improving treatment efficacy of peptide receptor radionuclide therapy (PRRT). Human NET cell lines BON-1, NCI-H727, and GOT1 were treated with HDACis (i.e.

View Article and Find Full Text PDF

In recent years, radionuclide therapy (RT) and targeted radionuclide therapy (TRT) have gained great interest in cancer treatment. This is due to promising results obtained in both preclinical and clinical studies. However, a complete response is achieved in only a small percentage of patients that receive RT or TRT.

View Article and Find Full Text PDF

Cancer Associated Fibroblasts (CAFs) form a major component of the tumour microenvironment, they have a complex origin and execute diverse functions in tumour development and progression. As such, CAFs constitute an attractive target for novel therapeutic interventions that will aid both diagnosis and treatment of various cancers. There are, however, a few limitations in reaching successful translation of CAF targeted interventions from bench to bedside.

View Article and Find Full Text PDF

The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer (PCa) cells, making it an excellent tool for targeted imaging. The Ga-labeled GRPr antagonist SB3 has shown excellent results in preclinical and clinical studies and was selected for further clinical investigation. The aims of this phase I study were to investigate Ga-SB3 PET/CT imaging of primary PCa tumors and assess safety.

View Article and Find Full Text PDF

Purpose: Various radiolabeled prostate-specific membrane antigen (PSMA)-targeting tracers are clinically applied for prostate cancer (PCa) imaging and targeted radionuclide therapy. The PSMA binding affinities, biodistribution, and DNA-damaging capacities of these radiotracers have not yet been compared in detail. A major concern of PSMA-targeting radiotracers is the toxicity in other PSMA-expressing organs, such as the salivary glands, thus demanding careful evaluation of the most optimal and safest radiotracer.

View Article and Find Full Text PDF

Targeted therapies, such as radioimmunotherapy (RIT), present a promising treatment option for the eradication of tumor lesions. RIT has shown promising results especially for hematologic malignancies, but the therapeutic efficacy is limited by unfavorable tumor-to-background ratios resulting in high radiotoxicity. Pretargeting strategies can play an important role in addressing the high toxicity profile of RIT.

View Article and Find Full Text PDF

Purpose: The gastrin-releasing peptide receptor (GRPR), overexpressed on various tumor types, is an attractive target for receptor-mediated imaging and therapy. Another interesting approach would be the use of GRPR radioligands for pre-operative imaging and subsequent radio-guided surgery, with the goal to improve surgical outcome. GRPR radioligands were successfully implemented in clinical studies, especially Sarabesin 3 (SB3) is an appealing GRPR antagonist with high receptor affinity.

View Article and Find Full Text PDF

Local drug delivery of Doxorubicin (Dox) with thermosensitive liposomes (TSL) and hyperthermia (HT) has shown preclinically to achieve high local drug concentrations with good therapeutic efficacy. Currently, this is clinically studied for treatment of chest wall recurrence of breast cancer, however with various outcomes. This study examines the potency of neoadjuvant TSL HT combination therapy in two orthotopic mouse models of human breast cancer, MDA-MB-231 and T-47D, which morphologically correlate to mesenchymal and epithelial phenotypes, respectively.

View Article and Find Full Text PDF

Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated.

View Article and Find Full Text PDF

Background: APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated.

View Article and Find Full Text PDF

Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.

View Article and Find Full Text PDF

Background: The gastrin releasing peptide receptor (GRPR) and the somatostatin receptor 2 (SSTR2) are overexpressed on primary breast cancer (BC), making them ideal candidates for receptor-mediated nuclear imaging and therapy. The aim of this study was to determine whether these receptors are also suitable targets for metastatic BC.

Methods: mRNA expression of human BC samples were studied by in vitro autoradiography and associated with radioligand binding.

View Article and Find Full Text PDF