Metal-free heterogeneous catalysis is promising in the context of H generation. Therefore, establishing structure-activity relationships is a crucial issue to improve the development of more efficient catalysts. Herein, to evaluate the reactivity of the oxygen functionalities in carbonaceous materials, commercial functionalized pyrolytically stripped carbon nanofibers (CNFs) were used as catalysts in the liquid-phase hydrous hydrazine decomposition process and its activity was compared to that of a pristine CNF material.
View Article and Find Full Text PDFHigh-pressure high-temperature syntheses that involve volatile-bearing aqueous fluids are typically accomplished by enclosing the samples in gas-tight welded shut noble-metal capsules, from which the bulk volatile content must be extracted to be analyzed with mass spectroscopy, hence making the analysis non-replicable. Here we describe a novel non-destructive method that ensures the identification and the quantitative estimate of the volatiles directly in the sealed capsule, focusing on fluid HO-CO mixtures equilibrated with graphite at conditions of geological interest (1 GPa, 800 °C). We used a high-energy (77 keV) synchrotron X-ray radiation combined with a cryostat to produce X-ray diffraction patterns and X-ray diffraction microtomographic cross-sections of the volatile-bearing samples down to -180 °C, thus encompassing the conditions at which crystalline phases-solid CO and clathrate (CO hydrate)-form.
View Article and Find Full Text PDFHerein we report a combined experimental and computational investigation unravelling the hydrazine hydrate decomposition reaction on metal-free catalysts. The study focuses on commercial graphite and two different carbon nanofibers, pyrolytically stripped (CNF-PS) and high heat-treated (CNF-HHT), respectively, treated at 700 and 3000 °C to increase their intrinsic defects. Raman spectroscopy demonstrated a correlation between the initial catalytic activity and the intrinsic defectiveness of carbonaceous materials.
View Article and Find Full Text PDFCommercial graphite (GP), graphite oxide (GO), and two carbon nanofibers (CNF-PR24-PS and CNF-PR24-LHT) were used as catalysts for the metal-free dehydrogenation reaction of formic acid (FA) in the liquid phase. Raman and XPS spectroscopy demonstrated that the activity is directly correlated with the defectiveness of the carbon material (GO > CNF-PR24-PS > CNF-PR24-LHT > GP). Strong deactivation phenomena were observed for all the catalysts after 5 minutes of reaction.
View Article and Find Full Text PDF