Background: Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring is not yet fully supported by adequate studies addressing technical reliability and acceptance.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2016
Background And Objectives: The automated analysis of indirect immunofluorescence images for Anti-Nuclear Autoantibody (ANA) testing is a fairly recent field that is receiving ever-growing interest from the research community. ANA testing leverages on the categorization of intensity level and fluorescent pattern of IIF images of HEp-2 cells to perform a differential diagnosis of important autoimmune diseases. Nevertheless, it suffers from tremendous lack of repeatability due to subjectivity in the visual interpretation of the images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Automated HEp-2 mitotic cell recognition in IIF images is an important and yet scarcely explored step in the computer-aided diagnosis of autoimmune disorders. Such step is necessary to assess the goodness of the HEp-2 samples and helps the early diagnosis of the most difficult or ambiguous cases. In this work, we propose a completely unsupervised approach for HEp-2 mitotic cell recognition that overcomes the problem of mitotic/non-mitotic class imbalance due to the limited number of mitotic cells.
View Article and Find Full Text PDFThe automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with different fluorescent intensities and staining patterns without any a priori knowledge.
View Article and Find Full Text PDF