Publications by authors named "Simone Techert"

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

In the context of global climate change, the demand for new functional materials that are sustainable and environmentally friendly is rapidly increasing. Cellulose and lignin are the two most abundant raw materials in nature, and are ideal components for functional materials. The hydrophilic interface and easy film-forming properties of cellulose nanofibrils make them excellent candidates for natural biopolymer templates and network structures.

View Article and Find Full Text PDF

The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO Fe dimer of the form [Fe(HL)](BF)·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole).

View Article and Find Full Text PDF

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime.

View Article and Find Full Text PDF

Nanostructures formed by the self-assembly of modified/unmodified amino acids have the potential to be useful in several biological/nonbiological applications. In that regard, the greater conformational space provided by γ-amino acids, owing to their additional backbone torsional degrees of freedom and enhanced proteolytic stability, compared to their α-counterparts, should be explored. Though, modified single amino acid-based nanomaterials such as nanobelts or hydrogels are developed by utilizing the monosubstituted γ-amino acids derived from the backbone homologation of phenylalanine (Phe).

View Article and Find Full Text PDF

The structure of the title salt, CHN ·CHO (), is reported. The compound is built from a protonated 2-methyl-imidazole and a singly deprotonated trimesic acid. Detailed analysis of bond distances and angles for both ions reveals subtle differences compared with their neutral mol-ecule counterpart.

View Article and Find Full Text PDF

Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm.

View Article and Find Full Text PDF

The structural evolution of spin crossover (SCO) complexes during their spin transition at equilibrium and out-of-equilibrium conditions needs to be understood to enable their successful utilisation in displays, actuators and memory components. In this study, diffraction techniques were employed to study the structural changes accompanying the temperature increase and the light irradiation of a defect [2 × 2] triiron(II) metallogrid of the form [FeII3L(HL)](BF)·4MeCN (FE3), L = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole. Although a multi-temperature crystallographic investigation on single crystals evidenced that the compound does not exhibit a thermal spin transition, the structural analysis of the defect grid suggests that the flexibility of the grid, provided by a metal-devoid vertex, leads to interesting characteristics that can be used for intermolecular cooperativity in related thermally responsive systems.

View Article and Find Full Text PDF

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.

View Article and Find Full Text PDF

Two conformational polymorphs of a donor-bridge-acceptor (D-B-A) dyad, p-(CH)N-CH-(CH)-(1-pyrenyl)/PyCHDMA, were studied, where the electron donor (D) moiety p-(CH)N-CH/DMA is connected through a bridging group (B), -CH-CH-, to the electron acceptor (A) moiety pyrene. Though molecular dyads like PyCHDMA have the potential to change solar energy into electrical current through the process of photoinduced intramolecular charge transfer (ICT), the major challenge is the real-time investigation of the photoinduced ICT process in crystals, necessary to design solid-state optoelectronic materials. The time-correlated single photon counting (TCSPC) measurements with the single crystals showed that the ICT state lifetime of the thermodynamic form, PyCHDMA1 (pyrene and DMA: axial), is ∼3 ns, whereas, for the kinetic form, PyCHDMA20 (pyrene and DMA: equatorial), it is ∼7 ns, while photoexcited with 375 nm radiation.

View Article and Find Full Text PDF

ConspectusWater splitting is intensively studied for sustainable and effective energy storage in green/alternative energy harvesting-storage-release cycles. In this work, we present our recent developments for combining liquid jet microtechnology with different types of soft X-ray spectroscopy at high-flux X-ray sources, in particular developed for studying the oxygen evolution reaction (OER). We are particularly interested in the development of photon-in/photon-out techniques, such as in situ resonant inelastic X-ray scattering (RIXS) techniques at high-repetition-frequency X-ray sources, pointing toward capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Red fluorophores produced by oral bacteria are essential for diagnosing and treating bacterial infections in tissues, particularly in dental contexts.
  • The study analyzed how different oral bacteria, such as Streptococcus and Actinomyces species, exhibit varied fluorescence depending on the nutrient type in the agar they are cultured on.
  • Key findings indicate that certain bacteria emit strong red fluorescence on specific agars, with emissions correlating closely with established porphyrins like protoporphyrin IX, suggesting potential markers for oral health conditions.
View Article and Find Full Text PDF

Spin crossover complexes (SCO) are among the most studied molecular switches due to their potential use in displays, sensors, actuators and memory components. A prerequisite to using these materials is the understanding of the structural changes following the spin transition at out-of-equilibrium conditions. So far, out-of-equilibrium studies in SCO solids have been focused on mononuclear complexes, though a growing number of oligonuclear SCO complexes showing cooperative effects are being reported.

View Article and Find Full Text PDF

The title compound, (CHN)[Co(HO)][Co(CHO)(HO)] (), was synthesized from cobalt(II) chloride, 1,3,5-benzene tri-carb-oxy-lic acid (Hbtc) and 2-methyl-imidazole (H-2mIm) under ambient conditions. The structure of is here reported and compared with the parent complex hexa-aqua-cobalt bis-(1-imidazol-3-ium) tetra-aqua-bis-(benzene-1,3,5-tri-carboxyl-ato)cobalt ().

View Article and Find Full Text PDF

Spin crossover (SCO) complexes are prototypes of materials with bi- or multi-stability in the solid state. The structural evolution during their spin transition is a key feature to establish the foundations of how to utilize this type of material. So far, ultrafast time-resolved structural investigations of SCO solids have been focused on monometallic complexes, though an increasing number of oligometallic SCO complexes showing cooperativity effects are being reported.

View Article and Find Full Text PDF

Pyrene based molecules are inclined to form excimers through self-association upon photoexcitation. In this work, the pyrene core is functionalized with the N-methylacetamide group at the position 1 or 2 to develop pyren-1-methylacetamide (PyMA1) and pyren-2-methylacetamide (PyMA2), respectively. Upon photoexcitation with 345 nm, a portion of molecules in PyMA1 and PyMA2 solutions at ≥1.

View Article and Find Full Text PDF

The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin.

View Article and Find Full Text PDF

We investigated the photoionization and fragmentation of isolated metal protoporphyrin IX cations (MPPIX with M=Fe, Co, Zn) by means of vacuum-ultraviolet (VUV) action spectroscopy in the energy range of 8.5-35 eV. Experiments were carried out in the gas phase by interfacing an electrospray ionization tandem mass spectrometer with a synchrotron beamline.

View Article and Find Full Text PDF

Near-edge X-ray absorption mass spectrometry (NEXAMS) is an action-spectroscopy technique of growing interest for investigations into the spatial and electronic structure of biomolecules. It has been used successfully to give insights into different aspects of the photodissociation of peptides and to probe the conformation of proteins. It is a current question whether the fragmentation pathways are sensitive toward effects of conformational isomerism, tautomerism, and intramolecular interactions in gas-phase peptides.

View Article and Find Full Text PDF

Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom.

View Article and Find Full Text PDF

X-ray absorption spectroscopy (XAS) is a powerful element-specific technique that allows the study of structural and chemical properties of matter. Often an indirect method is used to access the X-ray absorption (XA). This work demonstrates a new XAS implementation that is based on off-axis transmission Fresnel zone plates to obtain the XA spectrum of LaSrMnO by analysis of three emission lines simultaneously at the detector, namely the O 2p-1s, Mn 3s-2p and Mn 3d-2p transitions.

View Article and Find Full Text PDF

The photodissociation dynamics of CHI and CHClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide / range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion.

View Article and Find Full Text PDF

X-ray spectroscopy is a method, ideally suited for investigating the electronic structure of matter, which has been enabled by the rapid developments in light sources and instruments. The x-ray fluorescence lines of life-relevant elements such as carbon, nitrogen, and oxygen are located in the soft x-ray regime and call for suitable spectrometer devices. In this Letter, we present a high-resolution spectrum of liquid water, recorded with a soft x-ray spectrometer based on a reflection zone plate (RZP) design.

View Article and Find Full Text PDF

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology.

View Article and Find Full Text PDF

We have investigated the photoionization and photofragmentation yields of gas-phase multiply protonated melittin cations for photon energies at the K-shell absorption edges of carbon, nitrogen, and oxygen. Two similar experimental approaches were employed. In both experiments, mass selected [melittin+qH] (q=2-4) ions were accumulated in radiofrequency ion traps.

View Article and Find Full Text PDF