BACH1 (BRCA1-associated C-terminal helicase 1), the product of the BRIP1 {BRCA1 [breast cancer 1, early onset]-interacting protein C-terminal helicase 1; also known as FANCJ [FA-J (Fanconi anaemia group J) protein]} gene mutated in Fanconi anaemia patients from complementation group J, has been implicated in DNA repair and damage signalling. BACH1 exerts DNA helicase activities and physically interacts with BRCA1 and MLH1 (mutL homologue 1), which differentially control DNA DSB (double-strand break) repair processes. The present study shows that BACH1 plays a role in both HR (homologous recombination) and MMEJ (microhomology-mediated non-homologous end-joining) and reveals discrete mechanisms underlying modulation of these pathways.
View Article and Find Full Text PDFBackground: Our previous studies showed that the expression of the monocyte-chemoattractant protein (MCP)-1, a chemokine, which triggers the infiltration and activation of cells of the monocyte-macrophage lineage, is abrogated in human papillomavirus (HPV)-positive premalignant and malignant cells. In silico analysis of the MCP-1 upstream region proposed a putative p53 binding side about 2.5 kb upstream of the transcriptional start.
View Article and Find Full Text PDFHere, we describe for the first time the Crc (catabolite repression control) protein from the soil bacterium Acinetobacter baylyi. Expression of A. baylyi crc varied according to the growth conditions.
View Article and Find Full Text PDFThe role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement.
View Article and Find Full Text PDFThe bacterium Acinetobacter baylyi uses the branched beta-ketoadipate pathway to metabolize aromatic compounds. Here, the multiple-level regulation of expression of the pca-qui operon encoding the enzymes for protocatechuate and quinate degradation was studied. It is shown that both activities of the IclR-type regulator protein PcaU at the structural gene promoter pcaIp, namely protocatechuate-dependent activation of pca-qui operon expression as well as repression in the absence of protocatechuate, can be observed in a different cellular background (Escherichia coli) and therefore are intrinsic to PcaU.
View Article and Find Full Text PDFThe 'regulatory' beta-subunit of protein kinase CK2 has previously been shown to interact with protein kinases such as A-Raf, c-Mos, Lyn and Chk1 in addition to the catalytic subunit of CK2. Sequence alignments suggest that these interactions have a structural basis, and hence other protein kinases harboring corresponding sequences may be potential interaction partners for CK2beta. We show here that Chk2 specifically interacts with CK2beta in vitro and in cultured cells, and that activation of Chk2 leads to a reduction of this interaction.
View Article and Find Full Text PDFp53 plays a central role in the maintenance of the genome integrity, both as a gatekeeper and a caretaker. Sequence-specific recognition of DNA is underlying the ability of p53 to transcriptionally transactivate target genes during checkpoint control and to regulate DNA replication at the TGCCT repeat from the ribosomal gene cluster (RGC). In contrast, suppression of recombination by p53 has been observed with nonconsensus DNA sequences.
View Article and Find Full Text PDF