Publications by authors named "Simone Schito"

Background: Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth.

View Article and Find Full Text PDF

Knowledge about the specific affinity of whole cells toward a substrate, commonly referred to as k , is a crucial parameter for characterizing growth within bioreactors. State-of-the-art methodologies measure either uptake or consumption rates at different initial substrate concentrations. Alternatively, cell dry weight or respiratory data like online oxygen and carbon dioxide transfer rates can be used to estimate k .

View Article and Find Full Text PDF

Current bioprocesses for production of value-added compounds are mainly based on pure cultures that are composed of rationally engineered strains of model organisms with versatile metabolic capacities. However, in the comparably well-defined environment of a bioreactor, metabolic flexibility provided by various highly abundant biosynthetic enzymes is much less required and results in suboptimal use of carbon and energy sources for compound production. In nature, non-model organisms have frequently evolved in communities where genome-reduced, auxotrophic strains cross-feed each other, suggesting that there must be a significant advantage compared to growth without cooperation.

View Article and Find Full Text PDF