Publications by authors named "Simone Romoli"

Article Synopsis
  • Despite advances in understanding kidney injury through lipids and metabolites, there's a lack of comprehensive data on the metabolic pathways involved in kidney impairment, partly due to limited kidney biopsy samples from living donors.
  • This study utilized kidneys from deceased transplant donors to investigate acute kidney injury, revealing common changes in injury and inflammation markers in those with reduced kidney function, along with various cellular interactions.
  • The research highlighted the role of arachidonic acid metabolism and other pathways linked to inflammation, showing that inhibiting certain lipid mediators can mitigate injury in kidney cells, suggesting potential therapeutic targets for kidney function recovery.
View Article and Find Full Text PDF

Insufficient podocyte regeneration after injury is a central pathomechanism of glomerulosclerosis and chronic kidney disease. Podocytes constitutively secrete the chemokine CXCL12, which is known to regulate homing and activation of stem cells; hence we hypothesized a similar effect of CXCL12 on podocyte progenitors. CXCL12 blockade increased podocyte numbers and attenuated proteinuria in mice with Adriamycin-induced nephropathy.

View Article and Find Full Text PDF

Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs.

View Article and Find Full Text PDF

Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD).

View Article and Find Full Text PDF

To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. had the highest significant number of PPI connections.

View Article and Find Full Text PDF

Often the cause of refractory lupus nephritis (RLN) remains unclear. We performed next-generation sequencing for podocyte genes in an RLN patient and identified compound heterozygosity for APOL1 risk alleles G1 and G2 and a novel homozygous c.[1049C>T]+[1049C>T] NPHS1 gene variant of unknown significance.

View Article and Find Full Text PDF

CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression.

View Article and Find Full Text PDF

Rapidly progressive glomerulonephritis is characterized by glomerular necroinflammation and crescent formation. Its treatment includes unspecific and toxic agents; therefore, the identification of novel therapeutic targets is required. The E3-ubiquitin ligase murine double minute (MDM)-2 is a nonredundant element of NF-κB signaling and the negative regulator of tumor suppressor gene TP53-mediated cell cycle arrest and cell death.

View Article and Find Full Text PDF

Crystals cause injury in numerous disorders, and induce inflammation via the NLRP3 inflammasome, however, it remains unclear how crystals induce cell death. Here we report that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate and cystine trigger caspase-independent cell death in five different cell types, which is blocked by necrostatin-1. RNA interference for receptor-interacting protein kinase 3 (RIPK3) or mixed lineage kinase domain like (MLKL), two core proteins of the necroptosis pathway, blocks crystal cytotoxicity.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) research is limited by the lack of convenient inducible models mimicking human CKD and its complications in experimental animals. We demonstrate that a soluble oxalate-rich diet induces stable stages of CKD in male and female C57BL/6 mice. Renal histology is characterized by tubular damage, remnant atubular glomeruli, interstitial inflammation, and fibrosis, with the extent of tissue involvement depending on the duration of oxalate feeding.

View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation contributes to gout, autoimmune vasculitis, thrombosis, and atherosclerosis. The outside-in signaling pathway triggering NET formation is unknown. Here, we show that the receptor-interacting protein kinase (RIPK)-1-stabilizers necrostatin-1 or necrostatin-1s and the mixed lineage kinase domain-like (MLKL)-inhibitor necrosulfonamide prevent monosodium urate (MSU) crystal- or PMA-induced NET formation in human and mouse neutrophils.

View Article and Find Full Text PDF

Podocyte loss is a general mechanism of glomerular dysfunction that initiates and drives the progression of chronic kidney disease, which affects 10% of the world population. Here, we evaluate whether the regenerative response to podocyte injury influences chronic kidney disease outcome. In models of focal segmental glomerulosclerosis performed in inducible transgenic mice where podocytes are tagged, remission or progression of disease was determined by the amount of regenerated podocytes.

View Article and Find Full Text PDF

Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner.

View Article and Find Full Text PDF

The metabolic and hemodynamic alterations in diabetes activate podocytes to increase extracellular matrix (ECM) production, leading to thickening of the glomerular basement membrane (GBM). We hypothesized that diabetes would activate parietal epithelial cells (PECs) in a similar manner and cause thickening of Bowman's capsules. Periodic acid Schiff staining of human kidney biopsies of 30 patients with diabetic nephropathy (DN) revealed a significantly thicker Bowman's capsule as compared with 20 non-diabetic controls.

View Article and Find Full Text PDF

Murine double minute-2 (MDM2), an E3 ligase that regulates the cell cycle and inflammation, is highly expressed in podocytes. In podocyte injury, MDM2 drives podocyte loss by mitotic catastrophe, but the function of MDM2 in resting podocytes has not been explored. Here, we investigated the effects of podocyte MDM2 deletion in vitro and in vivo.

View Article and Find Full Text PDF

Foreign nucleic acids are recognized by germ-line-encoded receptors expressed in immune and nonimmune cells. Activation of the nucleic acid-specific pattern recognition receptors by foreign nucleic acid promotes production of inflammatory cytokines (mostly type I IFNs) and at the later stage leads to cell death. Here, we describe reliable and simple methods to quantify cell death caused by nucleic acid recognition.

View Article and Find Full Text PDF

AKI involves early Toll-like receptor (TLR)-driven immunopathology, and resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, activation of TLRs also has been implicated in epithelial repair. We hypothesized that TLR signaling drives tubule regeneration after acute injury through the induction of certain ILs.

View Article and Find Full Text PDF