Publications by authors named "Simone Rochfort"

Paratuberculosis is a debilitating disease of ruminants that causes significant economic loss in both cattle and sheep. Early detection of the disease is crucial to controlling the disease; however, current diagnostic tests lack sensitivity. This study evaluated the potential for volatile organic compounds (VOCs) detected by gas chromatography and an electronic nose (eNose) for use as diagnostic tools to differentiate between Map-infected and non-infected cattle and sheep.

View Article and Find Full Text PDF

Efforts to optimize the longevity of dairy cows are hindered by the increased risk of adverse health events, culling or dying on farm with increased parity. Lipidomics provides a platform to help identify important biomarkers and biological pathways associated with increased parity and associated aging. A large, multi-site (15 pasture-based, 15 TMR farms) cross-sectional study collected plasma samples from nonlactating, late pregnant, 'dry' cow (696 cows, ~27 d prepartum) and peak-milk cows (796 cows, ~58 DIM) in a disproportionate stratified (parity: 0, 1, 2, > 2 for dry cows; 1, 2, 3, > 3 for peak-milk cows) random sampling frame.

View Article and Find Full Text PDF
Article Synopsis
  • Pediatric genetic epilepsies, including CDKL5 Deficiency Disorder (CDD), are severe and challenging, with many young patients experiencing frequent seizures that impede development and quality of life.
  • Current antiseizure medications often fail, prompting exploration into the therapeutic effects of cannabinoids like cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), particularly for drug-resistant conditions.
  • Despite promising results for other genetic epilepsies, research specifically targeting CDD is scarce and primarily anecdotal; using advanced models like patient-derived neurons and brain organoids could provide better insights into cannabinoid efficacy and mechanisms for potential treatment options.
View Article and Find Full Text PDF

In a bushfire burning of plant material generates volatile phenolics that may be absorbed by berries and leaves of grapes in nearby vineyards. In grapes these phenolics form glycoconjugates and the undesirable sensory attributes of smoke-exposed grapes only develop post-fermentation in the wine making process, when the free phenolics are released. To reduce the financial losses from producing smoke-tainted wines, phenolic glycosides associated with smoke-taint in grapes are currently monitored in analytical laboratories.

View Article and Find Full Text PDF

Cannabis is cultivated for therapeutic and recreational purposes where delta-9 tetrahydrocannabinol (THC) is a main target for its therapeutic effects. As the global cannabis industry and research into cannabinoids expands, more efficient and cost-effective analysis methods for determining cannabinoid concentrations will be beneficial to increase efficiencies and maximize productivity. The utilization of machine learning tools to develop near-infrared (NIR) spectroscopy-based prediction models, which have been validated from accurate and sensitive chemical analysis, such as gas chromatography (GC) or liquid chromatography mass spectroscopy (LCMS), is essential.

View Article and Find Full Text PDF

Phytohormones that trigger or repress flower meristem development in apple buds are thought to be locally emitted from adjacent plant tissues, including leaves and fruitlets. The presence of fruitlets is known to inhibit adjacent buds from forming flowers and thus fruits. The resulting absence of fruitlets the following season restores flower-promoting signalling to the new buds.

View Article and Find Full Text PDF

Aims: This study aimed to identify specific genomic targets for the detection and strain typing of Map and analyse their sensitivity and specificity, and detect Map directly from faeces.

Methods And Results: A comparative genomics approach was used to identify specific genomic targets for the detection and strain typing of Map. A Map specific qPCR using the primer pair 7132 that targets a DNA segregation ATPase protein was able to detect all strains of Map and is more sensitive than the current Johne's disease PCR assays with a sensitivity of 0.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFA) and lactate in ruminal fluid are products resulting from the microbial fermentation of substrates and can be used to reflect the composition and activity of the ruminal microbiome. Determination of SCFA and D-/L-lactate in ruminal fluid currently requires two separate protocols, which is time-consuming and costly. In this study, we have optimised and validated a simple and unified 3-nitrophenylhydrazine (3-NPH) derivatisation protocol and a 20 min chiral-LC-MS method for the simultaneous quantification of all SCFA and D- and L-lactate in ruminal fluid.

View Article and Find Full Text PDF

Background: Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities.

View Article and Find Full Text PDF

Background: To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species.

Results: Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map.

View Article and Find Full Text PDF

Cannabis is commercially cultivated for both therapeutic and recreational purposes in a growing number of jurisdictions. The main cannabinoids of interest are cannabidiol (CBD) and delta-9 tetrahydrocannabidiol (THC), which have applications in different therapeutic treatments. The rapid, nondestructive determination of cannabinoid levels has been achieved using near-infrared (NIR) spectroscopy coupled to high-quality compound reference data provided by liquid chromatography.

View Article and Find Full Text PDF

The detection of beneficial microbes living within perennial ryegrass seed causing no apparent defects is challenging, even with the most sensitive and conventional methods, such as DNA genotyping. Using a near-infrared hyperspectral imaging system (NIR-HSI), we were able to discriminate not only the presence of the commercial NEA12 fungal endophyte strain but perennial ryegrass cultivars of diverse seed age and batch. A total of 288 wavebands were extracted for individual seeds from hyperspectral images.

View Article and Find Full Text PDF

Perennial ryegrass ( L.), an economically important pasture and turf grass, is commonly infected with asexual species endophytes. Endophytes provide enhanced bioprotection by producing alkaloids, and research often focusses on the negative impact on grazing animals.

View Article and Find Full Text PDF

Maintaining specific and reproducible cannabinoid compositions (type and quantity) is essential for the production of cannabis-based remedies that are therapeutically effective. The current study investigates factors that determine the plant's cannabinoid profile and examines interrelationships between plant features (growth rate, phenology and biomass), inflorescence morphology (size, shape and distribution) and cannabinoid content. An examination of differences in cannabinoid profile within genotypes revealed that across the cultivation facility, cannabinoids' qualitative traits (ratios between cannabinoid quantities) remain fairly stable, while quantitative traits (the absolute amount of Δ-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), Δ-tetrahydrocannabivarin (THCV) and cannabidivarin (CBDV)) can significantly vary.

View Article and Find Full Text PDF

Milk is a rich source of lipids, with the major components being triglycerides (TAG) and phospholipids (mainly phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI)). Liquid chromatography-mass spectrometry (LC-MS) is the predominant technique for lipid identification and quantification across all biological samples. While fatty acid (FA) composition of the major lipid classes of milk can be readily determined using tandem MS, elucidating the regio-distribution and double bond position of the FA remains difficult.

View Article and Find Full Text PDF

Species in the fungal genus are able to convert simple sugars into primary metabolites such as fumaric acid, lactic acid, citric acid, and, to a lesser extent, malic acid in the presence of specific carbon and nitrogen sources. This ability has been linked to plant pathogenicity. causes hull rot disease in almonds, symptoms of which have been previously associated with the fungus's production of fumaric acid.

View Article and Find Full Text PDF

The faba bean is one of the earliest domesticated crops, with both economic and environmental benefits. Like most legumes, faba beans are high in protein, and can be used to contribute to a balanced diet, or as a meat substitute. However, they also produce the anti-nutritional compounds, vicine and convicine (v-c), that when enzymatically degraded into reactive aglycones can potentially lead to hemolytic anemia or favism.

View Article and Find Full Text PDF

The triggers of biennial bearing are thought to coincide with embryonic development in apple and occurs within the first 70 days after full bloom (DAFB). Strong evidence suggests hormonal signals are perceived by vegetative apple spur buds to induce flowering. The hormonal response is typically referred to as the floral induction (FI) phase in bud meristem development.

View Article and Find Full Text PDF

Fermentation of pasture grasses and grains in the rumen of dairy cows and other ruminants produces methane as a by-product, wasting energy and contributing to the atmospheric load of greenhouse gasses. Many feeding trials in farmed ruminants have tested the impact of dietary components on feed efficiency, productivity and methane yield (MeY). Such diets remodel the rumen microbiome, altering bacterial, archaeal, fungal and protozoan populations, with an altered fermentation outcome.

View Article and Find Full Text PDF

Near-infrared (800-2500 nm; NIR) spectroscopy coupled to hyperspectral imaging (NIR-HSI) has greatly enhanced its capability and thus widened its application and use across various industries. This non-destructive technique that is sensitive to both physical and chemical attributes of virtually any material can be used for both qualitative and quantitative analyses. This review describes the advancement of NIR to NIR-HSI in agricultural applications with a focus on seed quality features for agronomically important seeds.

View Article and Find Full Text PDF

The high-throughput quantitation of cannabinoids is important for the cannabis industry. As medicinal products increase, and research into compounds that have pharmacological benefits increase, and the need to quantitate more than just the main cannabinoids becomes more important. This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, Δ8-THC, CBL, CBC, THCA-A and CBCA.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFA, C2-C5) in milk and serum are derived from rumen bacterial fermentation and, thus, have the potential to be used as biomarkers for the health status of dairy cows. Currently, there is no comprehensive and validated method that can be used to analyse all SCFAs in both bovine serum and milk. This paper reports an optimised protocol, combining 3-nitrophenylhydrazine (3-NPH) derivatisation and liquid chromatography-mass spectrometry (LC-MS) analysis for quantification of SCFA and β-hydroxybutyric acid (BHBA) in both bovine milk and bovine serum.

View Article and Find Full Text PDF

Asexual species of the genus (Clavicipitaceae, Ascomycota) form endosymbiotic associations with Pooidae grasses. This association is important both ecologically and to the pasture and turf industries, as the endophytic fungi confer a multitude of benefits to their host plant that improve competitive ability and performance such as growth promotion, abiotic stress tolerance, pest deterrence and increased host disease resistance. Biotic stress tolerance conferred by the production of bioprotective metabolites has a critical role in an industry context.

View Article and Find Full Text PDF

Bread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines.

View Article and Find Full Text PDF

endophytes, fungal endosymbionts of Pooidae grasses, are commonly utilized in forage and turf industries because they produce beneficial metabolites that enhance resistance against environmental stressors such as insect feeding and disease caused by phytopathogen infection. In pastoral agriculture, phytopathogenic diseases impact both pasture quality and animal production. Recently, bioactive endophyte strains have been reported to secrete compounds that significantly inhibit the growth of phytopathogenic fungi in vitro.

View Article and Find Full Text PDF