Intestinal organoids have widespread research and biomedical applications, such as disease modeling, drug testing and regenerative medicine. However, the transition towards clinical use has in part been hampered by the dependency on animal tumor-derived basement membrane extracts (BMEs), which are poorly defined and ill-suited for regulatory approval due to their origin and batch-to-batch variability. In order to overcome these limitations, and to enable clinical translation, we tested the use of a fully defined hydrogel matrix, QGel CN99, to establish and expand intestinal organoids directly from human colonic biopsies.
View Article and Find Full Text PDFCancer-associated proteases promote peritoneal dissemination and chemoresistance in malignant progression. In this study, kallikrein-related peptidases 4, 5, 6, and 7 (KLK4-7)-cotransfected OV-MZ-6 ovarian cancer cells were embedded in a bioengineered three-dimensional (3D) microenvironment that contains RGD motifs for integrin engagement to analyze their spheroid growth and survival after chemotreatment. KLK4-7-cotransfected cells formed larger spheroids and proliferated more than controls in 3D, particularly within RGD-functionalized matrices, which was reduced upon integrin inhibition.
View Article and Find Full Text PDFBiophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigelâ„¢ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density.
View Article and Find Full Text PDFWe have previously reported that novel vitronectin:growth factor (VN:GF) complexes significantly increase re-epithelialization in a porcine deep dermal partial-thickness burn model. However, the potential exists to further enhance the healing response through combination with an appropriate delivery vehicle which facilitates sustained local release and reduced doses of VN:GF complexes. Hyaluronic acid (HA), an abundant constituent of the interstitium, is known to function as a reservoir for growth factors and other bioactive species.
View Article and Find Full Text PDFSuccessful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural tissue inhibitor of metalloproteinases (TIMPs). When overexpression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors.
View Article and Find Full Text PDFThe behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.
View Article and Find Full Text PDFEngineering synthetic hydrogels on a molecular basis to introduce natural features that are important in instructing cell behavior is becoming increasingly crucial in biomaterial-based approaches for regenerative medicine and in cell biology to study cell-matrix interactions in three-dimensions (3D). Here, we used collagen gels and exploited the design flexibility of the biological, biochemical and physical characteristics offered by a PEG-based hydrogel system to systematically study the effect of specific extracellular microenvironments on the behavior of primary human fibroblasts in 3D. We firstly found that the proliferation profiles of fibroblasts from different patients cultured within collagen gels (3D) differed significantly from their behavior observed on tissue culture plastic (2D).
View Article and Find Full Text PDFNumerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal.
View Article and Find Full Text PDFAdvances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.
View Article and Find Full Text PDFExpert Rev Med Devices
January 2010
Successful repair of wounds and tissues remains a major healthcare and biomedical challenge in the 21st Century. In particular, chronic wounds often lead to loss of functional ability, increased pain and decreased quality of life, and can be a burden on carers and health-system resources. Advanced healing therapies employing biological dressings, skin substitutes, growth factor-based therapies and synthetic acellular matrices, all of which aim to correct irregular and dysfunctional cellular pathways present in chronic wounds, are becoming more popular.
View Article and Find Full Text PDFArticular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair.
View Article and Find Full Text PDFSemi-synthetic, proteolytically degradable polymer hydrogels have proven effective as scaffolds to augment bone and skin regeneration in animals. However, high costs due to expensive peptide building blocks pose a significant hurdle towards broad clinical usage of these materials. Here we demonstrate that tri-amino acid peptides bearing lysine (or arginine), flanked by two cysteine residues for crosslinking, are adequate as minimal plasmin-sensitive peptides in poly(ethylene glycol)-based hydrogels formed via Michael-type addition.
View Article and Find Full Text PDFTechnology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours.
View Article and Find Full Text PDFWe present polymeric hydrogel biomaterials that are biomimetic both in their synthesis and degradation. The design of oligopeptide building blocks with dual enzymatic responsiveness allows us to create polymer networks that are formed and functionalized via enzymatic reactions and are degradable via other enzymatic reactions, both occurring under physiological conditions. The activated transglutaminase enzyme factor XIIIa was utilized for site-specific coupling of prototypical cell adhesion ligands and for simultaneous cross-linking of hydrogel networks from factor XIIIa substrate-modified multiarm poly(ethylene glycol) macromers.
View Article and Find Full Text PDFThe molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction.
View Article and Find Full Text PDFWe present here the biological performance in supporting tissue regeneration of hybrid hydrogels consisting of genetically engineered protein polymers that carry specific features of the natural extracellular matrix, cross-linked with reactive poly(ethylene glycol) (PEG). Specifically, the protein polymers contain the cell adhesion motif RGD, which mediates integrin receptor binding, and degradation sites for plasmin and matrix-metalloproteinases, both being proteases implicated in natural matrix remodeling. Biochemical assays as well as in vitro cell culture experiments confirmed the ability of these protein-PEG hydrogels to promote specific cellular adhesion and to exhibit degradability by the target enzymes.
View Article and Find Full Text PDFToward the development of synthetic bioactive materials to support tissue repair, we present here the design, production, and characterization of genetically engineered protein polymers carrying specific key features of the natural extracellular matrix, as well as cross-linking with functionalized poly(ethylene glycol) (PEG) to form hybrid hydrogel networks. The repeating units of target recombinant protein polymers contain a cell-binding site for ligation of cell-surface integrin receptors and substrates for plasmin and matrix metalloproteinases (MMPs), proteases implicated in wound healing and tissue regeneration. Hydrogels were formed under physiological conditions via Michael-type conjugate addition of vinyl sulfone groups of end-functionalized PEG with thiols of cysteine residues, representing designed chemical cross-linking sites within recombinant proteins.
View Article and Find Full Text PDFLocal, controlled induction of angiogenesis remains a challenge that limits tissue engineering approaches to replace or restore diseased tissues. We present a new class of bioactive synthetic hydrogel matrices based on poly(ethylene glycol) (PEG) and synthetic peptides that exploits the activity of vascular endothelial growth factor (VEGF) alongside the base matrix functionality for cellular ingrowth, that is, induction of cell adhesion by pendant RGD-containing peptides and provision of cell-mediated remodeling by cross-linking matrix metalloproteinase substrate peptides. By using a Michael-type addition reaction, we incorporated variants of VEGF121 and VEGF165 covalently within the matrix, available for cells as they invade and locally remodel the material.
View Article and Find Full Text PDFTo address the need for bioactive materials toward clinical applications in wound healing and tissue regeneration, an artificial protein was created by recombinant DNA methods and modified by grafting of poly(ethylene glycol) diacrylate. Subsequent photopolymerization of the acrylate-containing precursors yielded protein-graft-poly(ethylene glycol) hydrogels. The artificial protein contained repeating amino acid sequences based on fibrinogen and anti-thrombin III, comprising an RGD integrin-binding motif, two plasmin degradation sites, and a heparin-binding site.
View Article and Find Full Text PDF