Publications by authors named "Simone Raoux"

The process of anion intercalation in graphite and its reversibility plays a crucial role in the next generation energy-storage devices. Herein the reaction mechanism of the aluminum graphite dual ion cell by operando X-ray scattering from small angles to wide angles is investigated. The staging behavior of the graphite intercalation compound (GIC) formation, its phase transitions, and its reversible process are observed for the first time by directly measuring the repeated intercalation distance, along with the microporosity of the cathode graphite.

View Article and Find Full Text PDF

The morphology and structural changes of confined matter are still far from being understood. This report deals with the development of a novel method based on the combination of anomalous small-angle X-ray scattering (ASAXS) and X-ray absorption near edge structure (XANES) spectroscopy to directly probe the evolution of the xenon adsorbate phase in mesoporous silicon during gas adsorption at 165 K. The interface area and size evolution of the confined xenon phase were determined via ASAXS demonstrating that filling and emptying the pores follow two distinct mechanisms.

View Article and Find Full Text PDF

Germanium (Ge) nanoparticles are gaining increasing interest due to their properties that arise in the quantum confinement regime, such as the development of the band structure with changing size. While promising materials, significant challenges still exist related to the development of synthetic schemes allowing for good control over size and morphology in a single step. Herein, we investigate a synthetic method that combines sulfur and primary amines to promote the reduction of organometallic Ge(IV) precursors to form Ge nanoparticles at relatively low temperatures (300 °C).

View Article and Find Full Text PDF

We present a new sample holder that is compatible with Photoemission Electron Microscopes (PEEMs) and contains a molecule evaporator. With the integrated low cost evaporator, a local and controlled material deposition in clean ultra-high vacuum conditions can be achieved minimizing the contamination of the analysis chamber. Different molecule systems can easily be studied by exchanging the sample holder.

View Article and Find Full Text PDF

Solution processing of polycrystalline compound semiconductor thin film using nanocrystals as a precursor is considered one of the most promising and economically viable routes for future large-area manufacturing. However, in polycrystalline compound semiconductor films such as CuZnSnS (CZTS), grain size, and the respective grain boundaries play a key role in dictating the optoelectronic properties. Various strategies have been employed previously in tailoring the grain size and boundaries (such as ligand exchange) but most require postdeposition thermal annealing at high temperature in the presence of grain growth directing agents (selenium or sulfur vapor with/without Na, K, etc.

View Article and Find Full Text PDF

The question of the nature and stability of polar ordering in nanoscale ferroelectrics is examined with colloidal nanocrystals of germanium telluride (GeTe). We provide atomic-scale evidence for room-temperature polar ordering in individual nanocrystals using aberration-corrected transmission electron microscopy and demonstrate a reversible, size-dependent polar-nonpolar phase transition of displacive character in nanocrystal ensembles. A substantial linear component of the distortion is observed, which is in contrast with theoretical reports predicting a toroidal state.

View Article and Find Full Text PDF

Phase transformation generally begins with nucleation, in which a small aggregate of atoms organizes into a different structural symmetry. The thermodynamic driving forces and kinetic rates have been predicted by classical nucleation theory, but observation of nanometer-scale nuclei has not been possible, except on exposed surfaces. We used a statistical technique called fluctuation transmission electron microscopy to detect nuclei embedded in a glassy solid, and we used a laser pump-probe technique to determine the role of these nuclei in crystallization.

View Article and Find Full Text PDF

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin.

View Article and Find Full Text PDF

Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography.

View Article and Find Full Text PDF

High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth.

View Article and Find Full Text PDF