Publications by authors named "Simone Rancati"

The COVID-19 pandemic is marked by the successive emergence of new SARS-CoV-2 variants, lineages, and sublineages that outcompete earlier strains, largely due to factors like increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system, to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute >10% of all the viral sequences added to the GISAID, a public database supporting viral genetic sequence sharing, in a given week.

View Article and Find Full Text PDF

The coronavirus disease of 2019 (COVID-19) pandemic is characterized by sequential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, lineages, and sublineages, outcompeting previously circulating ones because of, among other factors, increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute more than 10% of all the viral sequences added to the GISAID database on a given week.

View Article and Find Full Text PDF