Publications by authors named "Simone Radtke"

Aberrant signalling of receptor tyrosine kinases (RTKs), such as c-Met, the receptor for hepatocyte growth factor (HGF), has been implicated in the oncogenesis of various tumours including non-small cell lung carcinoma (NSCLC). Through its pro-migratory properties, c-Met has been implicated specifically in the process of tumour metastasis, demanding a better understanding of the underlying signalling pathways. Various players downstream of c-Met have been well characterised, including the extracellular-signal-regulated kinases (ERKs) 1 and 2.

View Article and Find Full Text PDF

In migrating NRK cells, aPKCs control the dynamics of turnover of paxillin-containing focal adhesions (FA) determining migration rate. Using a proteomic approach (two-dimensional fluorescence difference gel electrophoresis), dynein intermediate chain 2 (dynein IC2) was identified as a protein that is phosphorylated inducibly during cell migration in a PKC-regulated manner. By gene silencing and co-immunoprecipitation studies, we show that dynein IC2 regulates the speed of cell migration through its interaction with paxillin.

View Article and Find Full Text PDF

The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2.

View Article and Find Full Text PDF

c-Met [the hepatocyte growth factor (HGF) receptor] is a receptor tyrosine kinase playing a role in various biological events. Overexpression of the receptor has been observed in a number of cancers, correlating with increased metastatic tendency and poor prognosis. Additionally, activating mutations in c-Met kinase domain have been reported in a subset of familial cancers causing resistance to treatment.

View Article and Find Full Text PDF

The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines.

View Article and Find Full Text PDF

Human and murine oncostatin M (OSM) induce their bioactivities through a heterodimeric receptor complex consisting of gp130 and the OSM receptor (OSMR), which initiates a signaling pathway involving Janus kinases (JAKs) and transcription factors of the signal transducers and activators of transcription (STAT) family. In contrast to the signal transducing receptor subunit gp130, the OSMR allows strong activation of STAT5B. The underlying molecular mechanism, however, remained unclear.

View Article and Find Full Text PDF

Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR).

View Article and Find Full Text PDF

The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors.

View Article and Find Full Text PDF

We have investigated the molecular mechanisms involved in the activation process of the stress-activated protein kinases (SAPK) p38 and JNK in response to the interleukin-6-type cytokine oncostatin M (OSM). Interestingly, activation of p38 and JNK originates from tyrosine residue 861 in the OSMR; the same tyrosine residue which we identified before to be involved in the activation of the mitogen-activated kinases Erk1/2 [Hermanns, H. M.

View Article and Find Full Text PDF

The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study to determine the function of the Jak1 SH2 domain. We investigated the functionality of the Jak1 SH2 domain by stably reconstituting Jak1-defective human fibrosarcoma cells U4C with endogenous amounts of Jak1 in which the crucial arginine residue Arg466 within the SH2 domain has been replaced by lysine.

View Article and Find Full Text PDF

The gp130-like receptor (GPL) is a recently cloned member of the family of type I cytokine receptors. The name reflects its close relationship to gp130, the common receptor subunit of the interleukin (IL)-6-type cytokines. Indeed, the recently proposed ligand for GPL, IL-31, is closely related to the IL-6-type cytokines oncostatin M, leukemia inhibitory factor, and cardiotrophin-1.

View Article and Find Full Text PDF

The oncostatin M receptor (OSMR) is part of a heterodimeric receptor complex that mediates signal transduction of the pleiotropic cytokine OSM via a signaling pathway involving Janus kinases (Jaks) and transcription factors of the signal transducers and activators of transcription (STAT) family. Upon heterologous expression of the OSMR in several cell lines, we observed that its surface expression was significantly enhanced by coexpression of the Janus kinases Jak1, Jak2, and Tyk2 but not Jak3. Chimeric receptors consisting of the extracellular region of the interleukin-5 receptor beta chain and the transmembrane and intracellular part of the OSMR were similarly up-regulated on the plasma membrane when Jak1 was coexpressed.

View Article and Find Full Text PDF