Publications by authors named "Simone Pfarr"

Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Alcohol-dependent patients commonly show impairments in executive functions that facilitate craving and can lead to relapse. However, the molecular mechanisms leading to executive dysfunction in alcoholism are poorly understood, and new effective pharmacological treatments are desired. Here, using a bidirectional neuromodulation approach, we demonstrate a causal link between reduced prefrontal mGluR2 function and both impaired executive control and alcohol craving.

View Article and Find Full Text PDF

Cue-reward associations form distinct memories that can drive appetitive behaviors and cravings for both drugs and natural rewards. It is still unclear how such memories are encoded in the brain's reward system. We trained rats to concurrently self-administer either alcohol or a sweet saccharin solution as drug or natural rewards, respectively.

View Article and Find Full Text PDF

Excessive alcohol use is the cause of an ongoing public health crisis, and accounts for ~5% of global disease burden. A minority of people with recreational alcohol use develop alcohol addiction (hereafter equated with "alcohol dependence" or simply "alcoholism"), a condition characterized by a systematically biased choice preference for alcohol at the expense of healthy rewards, and continued use despite adverse consequences ("compulsivity"). Alcoholism is arguably the most pressing area of unmet medical needs in psychiatry, with only a small fraction of patients receiving effective, evidence-based treatments.

View Article and Find Full Text PDF

A few studies have reported aberrant functional connectivity in alcoholic patients, but the specific neural circuits involved remain unknown. Moreover, it is unclear whether these alterations can be reversed upon treatment. Here, we used functional MRI to study resting state connectivity in rats following chronic intermittent exposure to ethanol.

View Article and Find Full Text PDF

Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so-called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex (mPFC) play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear.

View Article and Find Full Text PDF

The use of functional magnetic resonance imaging (fMRI) to measure spontaneous fluctuations in blood oxygen level dependent (BOLD) signals has become an indispensable tool to investigate how brain regions interact and form long-range networks. Statistical dependency measures between brain regions obtained from BOLD signals can inform about brain functional states in longitudinal studies of neurological and psychiatric disorders. Furthermore, its non-invasive nature allows comparable measurements in clinical and animal studies, providing excellent translational capabilities.

View Article and Find Full Text PDF

Unlabelled: Loss of control over drinking is a key deficit in alcoholism causally associated with malfunction of the medial prefrontal cortex (mPFC), but underlying molecular and cellular mechanisms remain unclear. Cue-induced reinstatement of alcohol seeking activates a subset of mPFC neurons in rats, identified by their common expression of the activity marker cFos and comprised of both principal and interneurons. Here, we used cFos-lacZ and pCAG-lacZ transgenic rats for activity-dependent or nonselective inactivation of neurons, respectively, which by their lacZ encoded β-galactosidase activity convert the inactive prodrug Daun02 into the neurotoxin daunorubicin.

View Article and Find Full Text PDF