Publications by authors named "Simone Pacini"

Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs.

View Article and Find Full Text PDF

Immunofluorescence is an indispensable method for the identification, localization and study of the expression of target antigens in formalin-fixed, paraffin-embedded (FFPE) tissue sections of human bone marrow. However, the procedure shows technical limitations because of the chemical and physical treatments required for sample processing before imaging. Here we describe a revisited protocol to obtain high-resolution images of human bone marrow trephine biopsies, improving the antigen-antibody recognition and preserving the morphology and the architecture of the bone marrow microenvironment.

View Article and Find Full Text PDF

Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as "niche." BM niches have been classified based on micro-anatomic distance from the bone surface into "endosteal" and "central" niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited.

View Article and Find Full Text PDF

Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both and .

View Article and Find Full Text PDF

L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine (Gln) transporter ASCT2, but recent studies have demonstrated that it is also able to inhibit other sodium-dependent and independent amino acid transporters. Moreover, GPNA is a well known substrate of the enzyme γ-glutamyltransferase (GGT). Our aim was to evaluate the effect of GGT-mediated GPNA catabolism on cell viability and Gln transport.

View Article and Find Full Text PDF

Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Therapy resistance in advanced non-small cell lung cancer (NSCLC) is a significant issue, as cancer stem cells (CSCs) are often left behind after conventional treatment, contributing to relapse and metastasis.
  • The study identifies the mitochondrial citrate transporter SLC25A1 as crucial for the energy production and survival of lung CSCs, where its inhibition leads to the disruption of their self-renewal capability.
  • A new SLC25A1 inhibitor has shown potential to work synergistically with standard treatments like cisplatin or EGFR inhibitors, suggesting a promising strategy to improve therapy responses in drug-resistant lung CSCs.
View Article and Find Full Text PDF

Background: Bone Marrow MSCs are an appealing source for several cell-based therapies. Many bioreactors, as the Quantum Cell Expansion System, have been developed to generate a large number of MSCs under Good Manufacturing Practice conditions by using Human Platelet Lysate (HPL). Previously we isolated in the human bone marrow a novel cell population, named Mesodermal Progenitor Cells (MPCs), which we identified as precursors of MSCs.

View Article and Find Full Text PDF

Objective: Pre-clinical and uncontrolled studies in patients with systemic lupus erythematosus (SLE) showed that mesenchymal stromal cells (MSCs) have a potential therapeutic role in refractory cases. The optimal therapeutic strategy in these patients remain to be elucidated. Our aim was to test the hypothesis that repeated administrations of 1×10/kg body weight of allogenic MSCs, that is a significantly lower dosage with respect to the fixed 1×10 MSC used in animal models, can be effective in improving the clinical course of a murine SLE model.

View Article and Find Full Text PDF

Background: Mutation of general transcription factor IIi (GTF2I) (chromosome 7 c.74146970T>A) is common in thymic epithelial tumors and is a candidate driver aberration for cancer growth. To our knowledge, this mutation has not been described in other diseases.

View Article and Find Full Text PDF

Currently, no description of melanocortin receptor-4 (MC4R) expression or activity is available in human cancer cells, including glioblastoma (GBM). The aim of this study is to evaluate the presence of MC4Rs in GBM cells and the selective inhibition of their activity through the MC4R antagonist ML00253764 alone and in association with temozolomide in vitro and in vivo. MC4R genotyping and gene expression were performed on human GBM cells (U-87 and U-118) with real-time PCR.

View Article and Find Full Text PDF

Background: Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification.

View Article and Find Full Text PDF

(MPCs) are a very peculiar population of cells present in the human adult bone marrow, only recently discovered and characterized. Owing to their differentiation potential, MPCs can be considered progenitors for mesenchymal stromal cells (MSCs), and for this reason they potentially represent a promising cell population to apply for skeletal tissue regeneration applications. Here, we evaluate the effects of surface nanotopography on MPCs, considering the possibility that this specific physical stimulus alone can trigger MPC differentiation toward the mesenchymal lineage.

View Article and Find Full Text PDF

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability.

View Article and Find Full Text PDF

Reproductive hormones influence breast cancer development and progression. While the actions of sex steroids in this setting are established, tentative evidence suggests that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) may also play a role, yet this remains elusive. We here identify that T-47D breast cancer cells express functional receptors for FSH and LH, and that these hormones regulate breast cancer cell motility and invasion through the control of the actin cytoskeleton and the formation of cortical actin aggregates and focal adhesion complexes.

View Article and Find Full Text PDF

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic.

View Article and Find Full Text PDF

Among the very large number of polymeric materials that have been proposed in the field of orthopedics, polyethylene terephthalate (PET) is one of the most attractive thanks to its flexibility, thermal resistance, mechanical strength and durability. Several studies have been proposed that interface nano- or micro-structured surfaces with mesenchymal stromal cells (MSCs), demonstrating the potential of this technology for promoting osteogenesis. All these studies were carried out on biomaterials other than PET, which remains almost uninvestigated in terms of cell shaping, alignment and differentiation.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have been the object of extensive research for decades, due to their intrinsic clinical value. Nonetheless, the unambiguous identification of a unique in vivo MSC progenitor is still lacking, and the hypothesis that these multipotent cells could possibly arise from different in vivo precursors has been gaining consensus in the last years. We identified a novel multipotent cell population in human adult bone marrow that we first named Mesodermal Progenitor Cells (MPCs) for the ability to differentiate toward the mesenchymal lineage, while still retaining angiogenic potential.

View Article and Find Full Text PDF

The identification of eosinophils by flow cytometry is difficult because most of the surface antigens expressed by eosinophils are shared with neutrophils. Some methods have been proposed, generally based on differential light scatter properties, enhanced autofluorescence, lack of CD16 or selective positivity of CD52. Such methods, however, show several limitations.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have enormous intrinsic clinical value due to their multi-lineage differentiation capacity, support of hemopoiesis, immunoregulation and growth factors/cytokines secretion. MSCs have thus been the object of extensive research for decades. After completion of many pre-clinical and clinical trials, MSC-based therapy is now facing a challenging phase.

View Article and Find Full Text PDF

Recent investigations have made considerable progress in the understanding of tissue regeneration driven by mesenchymal stromal cells (MSCs). Data indicate the anatomical location of MSC as residing in the "perivascular" space of blood vessels dispersed across the whole body. This histological localization suggests that MSCs contribute to the formation of new blood vessels in vivo.

View Article and Find Full Text PDF

In recent years, human dental pulp stromal cells (DPSCs) have received growing attention due to their characteristics in common with other mesenchymal stem cells, in addition to the ease with which they can be harvested. In this study, we demonstrated that the isolation of DPSCs from third molar teeth of healthy individuals allowed the recovery of dental mesenchymal stem cells that showed self-renewal and multipotent differentiation capability. DPSCs resulted positive for CD73, CD90, CD105, STRO-1, negative for CD34, CD45, CD14 and were able to differentiate into osteogenic and chondrogenic cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu4ba0n6mcrm4rg4oj1dsc31euslhga57): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once