Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of MR-1 for protein synthesis, maturation of -type cytochromes, and protein secretion.
View Article and Find Full Text PDFMarine algae and bacteria produce approximately eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth's surface oceans annually. DMSP is an antistress compound and, once released into the environment, a major nutrient, signaling molecule, and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria.
View Article and Find Full Text PDFA growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis.
View Article and Find Full Text PDFDimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients that have roles in global sulfur cycling, atmospheric chemistry, signalling and, potentially, climate regulation. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater.
View Article and Find Full Text PDFCertain bacterial species have a natural ability to exchange electrons with extracellular redox partners. This behavior allows coupling of catalytic transformations inside bacteria to complementary redox transformations of catalysts and electrodes outside the cell. Electricity generation can be coupled to waste-water remediation.
View Article and Find Full Text PDFRuegeria pomeroyi DSS-3 is a model Roseobacter marine bacterium, particularly regarding its catabolism of dimethylsulfoniopropionate (DMSP), an abundant anti-stress molecule made by marine phytoplankton. We found a novel gene, dddW, which encodes a DMSP lyase that cleaves DMSP into acrylate plus the environmentally important volatile dimethyl sulfide (DMS). Mutations in dddW reduced, but did not abolish DMS production.
View Article and Find Full Text PDF