The negatively charged nitrogen-vacancy center (NV) presents remarkable spin-dependent optical properties that make it an interesting tool for magnetic field sensing. In this paper we exploit the polarization properties of the NV center absorption and emission processes to improve the magnetic sensitivity of an ensemble of NV centers. By simply equipping the experimental set-up of a half-wave plate in the excitation path and a polarizer in the detection path we demonstrate an improvement larger than a factor of two on the NV center magnetic sensitivity.
View Article and Find Full Text PDFAt the micrometric scale, vessels or skin capillaries network architecture can provide useful information for human health management. In this paper, from simulation to in vitro, we investigate some limits and interests of optical feedback interferometry (OFI) for blood flow imaging of skin vascularization. In order to analyze the tissue scattering effect on OFI performances, a series of skin-tissue simulating optical phantoms have been designed, fabricated and characterized.
View Article and Find Full Text PDF